Sol–gel synthesis and characterization of Ni-doping enhanced NixCd0.8−XZn0.2Al0.3Fe1.7O4 nanoparticles with exceptional photocatalytic activity for ciprofloxacin degradation
Muhammed Yasar, Khalid Javed, Muhammad Ibrahim, Fozia Noreen
{"title":"Sol–gel synthesis and characterization of Ni-doping enhanced NixCd0.8−XZn0.2Al0.3Fe1.7O4 nanoparticles with exceptional photocatalytic activity for ciprofloxacin degradation","authors":"Muhammed Yasar, Khalid Javed, Muhammad Ibrahim, Fozia Noreen","doi":"10.1007/s11144-024-02665-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the sol–gel synthesis of Ni-doped cadmium zinc aluminum ferrite Ni-doped Ni<sub>x</sub>Cd<sub>0.8−X</sub>Zn<sub>0.2</sub>Al<sub>0.3</sub>Fe<sub>1.7</sub>O<sub>4</sub> (X = 0,0.4) nanoparticles and their photocatalytic activity for ciprofloxacin degradation under visible-light irradiation were investigated. The nanoparticles were characterized using XRD, FTIR, SEM, EDX, and BET analyses. XRD revealed cubic spinel structures with crystallite sizes of 39 (undoped) and 30 nm (Ni-doped). FTIR spectra showed peak shifts upon Ni doping, indicating Ni<sup>2+</sup> ion substitution in the spinel lattice. SEM images showed that the nickel-free sample was porous and had larger, loosely packed grains, whereas the nickel-doped sample was denser and featured smaller, uniformly distributed grains. The Ni-doped sample exhibited a higher BET surface area (37.85 m<sup>2</sup>/g) and pore volume (1.836 cm<sup>3</sup>/g) than those of the undoped sample. The photocatalytic degradation of ciprofloxacin was significantly enhanced by Ni doping, achieving 97.88% in 60 min under visible light, which was attributed to the narrowed bandgap (2.1 eV), improved visible light absorption, and increased charge separation. Scavenger studies have identified hydroxyl radicals as primary reactive species. The addition of H<sub>2</sub>O<sub>2</sub> (up to 6 mM) enhanced the degradation rate, but higher concentrations decreased the rate. The catalyst exhibited gradual deactivation upon reuse, with the degradation efficiency decreasing from 97.88 (first cycle) to 90.93% (fifth cycle), owing to loss, deactivation, and fouling.</p></div>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"137 5","pages":"2847 - 2866"},"PeriodicalIF":1.7000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Kinetics, Mechanisms and Catalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11144-024-02665-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the sol–gel synthesis of Ni-doped cadmium zinc aluminum ferrite Ni-doped NixCd0.8−XZn0.2Al0.3Fe1.7O4 (X = 0,0.4) nanoparticles and their photocatalytic activity for ciprofloxacin degradation under visible-light irradiation were investigated. The nanoparticles were characterized using XRD, FTIR, SEM, EDX, and BET analyses. XRD revealed cubic spinel structures with crystallite sizes of 39 (undoped) and 30 nm (Ni-doped). FTIR spectra showed peak shifts upon Ni doping, indicating Ni2+ ion substitution in the spinel lattice. SEM images showed that the nickel-free sample was porous and had larger, loosely packed grains, whereas the nickel-doped sample was denser and featured smaller, uniformly distributed grains. The Ni-doped sample exhibited a higher BET surface area (37.85 m2/g) and pore volume (1.836 cm3/g) than those of the undoped sample. The photocatalytic degradation of ciprofloxacin was significantly enhanced by Ni doping, achieving 97.88% in 60 min under visible light, which was attributed to the narrowed bandgap (2.1 eV), improved visible light absorption, and increased charge separation. Scavenger studies have identified hydroxyl radicals as primary reactive species. The addition of H2O2 (up to 6 mM) enhanced the degradation rate, but higher concentrations decreased the rate. The catalyst exhibited gradual deactivation upon reuse, with the degradation efficiency decreasing from 97.88 (first cycle) to 90.93% (fifth cycle), owing to loss, deactivation, and fouling.
期刊介绍:
Reaction Kinetics, Mechanisms and Catalysis is a medium for original contributions in the following fields:
-kinetics of homogeneous reactions in gas, liquid and solid phase;
-Homogeneous catalysis;
-Heterogeneous catalysis;
-Adsorption in heterogeneous catalysis;
-Transport processes related to reaction kinetics and catalysis;
-Preparation and study of catalysts;
-Reactors and apparatus.
Reaction Kinetics, Mechanisms and Catalysis was formerly published under the title Reaction Kinetics and Catalysis Letters.