Tailoring phosphine ligands for improved C–H activation: insights from Δ-machine learning†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Digital discovery Pub Date : 2024-05-28 DOI:10.1039/D4DD00037D
Tianbai Huang, Robert Geitner, Alexander Croy and Stefanie Gräfe
{"title":"Tailoring phosphine ligands for improved C–H activation: insights from Δ-machine learning†","authors":"Tianbai Huang, Robert Geitner, Alexander Croy and Stefanie Gräfe","doi":"10.1039/D4DD00037D","DOIUrl":null,"url":null,"abstract":"<p >Transition metal complexes have played crucial roles in various homogeneous catalytic processes due to their exceptional versatility. This adaptability stems not only from the central metal ions but also from the vast array of choices of the ligand spheres, which form an enormously large chemical space. For example, Rh complexes, with a well-designed ligand sphere, are known to be efficient in catalyzing the C–H activation process in alkanes. To investigate the structure–property relation of the Rh complex and identify the optimal ligand that minimizes the calculated reaction energy Δ<em>E</em> of an alkane C–H activation, we have applied a Δ-machine learning method trained on various features to study 1743 pairs of reactants (Rh(PLP)(Cl)(CO)) and intermediates (Rh(PLP)(Cl)(CO)(H)(propyl)). Our findings demonstrate that the models exhibit robust predictive performance when trained on features derived from electron density (<em>R</em><small><sup>2</sup></small> = 0.816), and SOAPs (<em>R</em><small><sup>2</sup></small> = 0.819), a set of position-based descriptors. Leveraging the model trained on xTB-SOAPs that only depend on the xTB-equilibrium structures, we propose an efficient and accurate screening procedure to explore the extensive chemical space of bisphosphine ligands. By applying this screening procedure, we identify ten newly selected reactant–intermediate pairs with an average Δ<em>E</em> of 33.2 kJ mol<small><sup>−1</sup></small>, remarkably lower than the average Δ<em>E</em> of the original data set of 68.0 kJ mol<small><sup>−1</sup></small>. This underscores the efficacy of our screening procedure in pinpointing structures with significantly lower energy levels.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00037d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00037d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal complexes have played crucial roles in various homogeneous catalytic processes due to their exceptional versatility. This adaptability stems not only from the central metal ions but also from the vast array of choices of the ligand spheres, which form an enormously large chemical space. For example, Rh complexes, with a well-designed ligand sphere, are known to be efficient in catalyzing the C–H activation process in alkanes. To investigate the structure–property relation of the Rh complex and identify the optimal ligand that minimizes the calculated reaction energy ΔE of an alkane C–H activation, we have applied a Δ-machine learning method trained on various features to study 1743 pairs of reactants (Rh(PLP)(Cl)(CO)) and intermediates (Rh(PLP)(Cl)(CO)(H)(propyl)). Our findings demonstrate that the models exhibit robust predictive performance when trained on features derived from electron density (R2 = 0.816), and SOAPs (R2 = 0.819), a set of position-based descriptors. Leveraging the model trained on xTB-SOAPs that only depend on the xTB-equilibrium structures, we propose an efficient and accurate screening procedure to explore the extensive chemical space of bisphosphine ligands. By applying this screening procedure, we identify ten newly selected reactant–intermediate pairs with an average ΔE of 33.2 kJ mol−1, remarkably lower than the average ΔE of the original data set of 68.0 kJ mol−1. This underscores the efficacy of our screening procedure in pinpointing structures with significantly lower energy levels.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
定制膦配体以改善 C-H 活化:Δ机器学习的启示
过渡金属复合物因其卓越的多功能性,在各种均相催化过程中发挥着至关重要的作用。这种适应性不仅源于中心金属离子,还源于配体球的多种选择,它们构成了一个巨大的化学空间。例如,具有精心设计的配体球的 Rh 复合物在催化烷烃中的 C-H 活化过程中具有很高的效率。为了研究 Rh 配合物的结构-性质关系,并找出能使烷烃 C-H 活化的计算反应能量 ΔE 最小化的最佳配体,我们采用了根据各种特征训练的 Δ 机器学习方法,研究了 1743 对反应物(Rh(PLP)(Cl)(CO))和中间体(Rh(PLP)(Cl)(CO)(H)(丙基))。我们的研究结果表明,当根据电子密度(R2 = 0.816)和 SOAPs(R2 = 0.819)(一组基于位置的描述符)得出的特征进行训练时,模型表现出强大的预测性能。利用仅依赖于 xTB 平衡结构的 xTB-SOAPs 训练模型,我们提出了一种高效准确的筛选程序,用于探索双膦配体的广泛化学空间。通过应用这一筛选程序,我们确定了十对新选出的反应物-中间体,其平均ΔE 为 33.2 kJ mol-1,明显低于原始数据集 68.0 kJ mol-1 的平均ΔE。这说明我们的筛选程序在精确定位能级明显较低的结构方面非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Back cover Sorting polyolefins with near-infrared spectroscopy: identification of optimal data analysis pipelines and machine learning classifiers†‡ High accuracy uncertainty-aware interatomic force modeling with equivariant Bayesian neural networks† Correction: A smile is all you need: predicting limiting activity coefficients from SMILES with natural language processing Artificial intelligence-enabled optimization of battery-grade lithium carbonate production†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1