{"title":"Method of Predicting Braking Intention Using LSTM-CNN-Attention With Hyperparameters Optimized by Genetic Algorithm","authors":"Wei Yang, Yu Huang, Kongming Jiang, Zhen Zhang, Ketong Zong, Qin Ruan","doi":"10.1007/s12555-021-1113-x","DOIUrl":null,"url":null,"abstract":"<p>Prediction of a driver’s braking intention enables the advanced driver assistance system (ADAS) to intervene in the braking system as early as possible, which may shorten braking distance and improve driving safety. This paper proposes a novel deep learning model called LSTM-CNN-Attention that combines a long short-term memory (LSTM) neural network, convolutional neural network (CNN), and Attention mechanism for extracting spatiotemporal features of multi-sensor data to improve prediction accuracy. The proposed model inherits both temporal and spatial feature extraction abilities from LSTM and CNN. The LSTM-CNN-Attention model has a parallel architecture, which enhances the feature extraction ability of the model for multi-sensor time series data and improves the prediction accuracy of the driver’s braking intention before the braking action. Furthermore, a driving simulator is set up to sample driving data for training and evaluating the proposed method. According to the results of the experiment, the model obtains up to 3.16% higher accuracy than the baseline models such as LSTM, CNN, and bidirectional LTSM (Bi-LSTM). Additionally, the influence of sliding window size and prediction horizon on the performance of the method is investigated. A method of tuning hyperparameters using the genetic algorithm is presented. The results demonstrate that the prediction accuracy increases by about 2% after being optimized by GA.</p>","PeriodicalId":54965,"journal":{"name":"International Journal of Control Automation and Systems","volume":"33 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Control Automation and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12555-021-1113-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Prediction of a driver’s braking intention enables the advanced driver assistance system (ADAS) to intervene in the braking system as early as possible, which may shorten braking distance and improve driving safety. This paper proposes a novel deep learning model called LSTM-CNN-Attention that combines a long short-term memory (LSTM) neural network, convolutional neural network (CNN), and Attention mechanism for extracting spatiotemporal features of multi-sensor data to improve prediction accuracy. The proposed model inherits both temporal and spatial feature extraction abilities from LSTM and CNN. The LSTM-CNN-Attention model has a parallel architecture, which enhances the feature extraction ability of the model for multi-sensor time series data and improves the prediction accuracy of the driver’s braking intention before the braking action. Furthermore, a driving simulator is set up to sample driving data for training and evaluating the proposed method. According to the results of the experiment, the model obtains up to 3.16% higher accuracy than the baseline models such as LSTM, CNN, and bidirectional LTSM (Bi-LSTM). Additionally, the influence of sliding window size and prediction horizon on the performance of the method is investigated. A method of tuning hyperparameters using the genetic algorithm is presented. The results demonstrate that the prediction accuracy increases by about 2% after being optimized by GA.
期刊介绍:
International Journal of Control, Automation and Systems is a joint publication of the Institute of Control, Robotics and Systems (ICROS) and the Korean Institute of Electrical Engineers (KIEE).
The journal covers three closly-related research areas including control, automation, and systems.
The technical areas include
Control Theory
Control Applications
Robotics and Automation
Intelligent and Information Systems
The Journal addresses research areas focused on control, automation, and systems in electrical, mechanical, aerospace, chemical, and industrial engineering in order to create a strong synergy effect throughout the interdisciplinary research areas.