Model-free Predictive Trajectory Tracking Control and Obstacle Avoidance for Unmanned Surface Vehicle With Uncertainty and Unknown Disturbances via Model-free Extended State Observer

IF 2.5 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS International Journal of Control Automation and Systems Pub Date : 2024-05-28 DOI:10.1007/s12555-023-0524-2
Qianda Luo, Hongbin Wang, Ning Li, Bo Su, Wei Zheng
{"title":"Model-free Predictive Trajectory Tracking Control and Obstacle Avoidance for Unmanned Surface Vehicle With Uncertainty and Unknown Disturbances via Model-free Extended State Observer","authors":"Qianda Luo, Hongbin Wang, Ning Li, Bo Su, Wei Zheng","doi":"10.1007/s12555-023-0524-2","DOIUrl":null,"url":null,"abstract":"<p>The present paper proposes a model-free extended state observer (MFESO) based model and model-free predictive control (MPC-MFESO-MFPAC) approach for achieving trajectory tracking and obstacle avoidance of unmanned surface vehicle (USV) in complex environments. MFPAC is investigated for addressing the uncertainty in the kinetics modeling of USV system, eliminating the need for an accurate mathematical model of the USV. Additionally, the backstepping method is employed to eliminate rotational characteristics, enabling direct application of MFPAC in USV control. In the computation of the virtual control law, MPC is utilized for kinematics which can be easily modeled, while incorporating obstacle avoidance performance. By utilizing the model-free ESO for estimating additional unknown perturbations, this approach obviates the need for any prior knowledge of the system’s dynamics. The stability analysis demonstrates that the proposed control strategy is bounded-input and bounded-output (BIBO) stable. The simulation results validate the effectiveness and advancement of the algorithm.</p>","PeriodicalId":54965,"journal":{"name":"International Journal of Control Automation and Systems","volume":"37 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Control Automation and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12555-023-0524-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The present paper proposes a model-free extended state observer (MFESO) based model and model-free predictive control (MPC-MFESO-MFPAC) approach for achieving trajectory tracking and obstacle avoidance of unmanned surface vehicle (USV) in complex environments. MFPAC is investigated for addressing the uncertainty in the kinetics modeling of USV system, eliminating the need for an accurate mathematical model of the USV. Additionally, the backstepping method is employed to eliminate rotational characteristics, enabling direct application of MFPAC in USV control. In the computation of the virtual control law, MPC is utilized for kinematics which can be easily modeled, while incorporating obstacle avoidance performance. By utilizing the model-free ESO for estimating additional unknown perturbations, this approach obviates the need for any prior knowledge of the system’s dynamics. The stability analysis demonstrates that the proposed control strategy is bounded-input and bounded-output (BIBO) stable. The simulation results validate the effectiveness and advancement of the algorithm.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过无模型扩展状态观测器实现具有不确定性和未知扰动的无人水面飞行器的无模型预测轨迹跟踪控制和避障
本文提出了一种基于无模型扩展状态观测器(MFESO)的模型和无模型预测控制(MPC-MFESO-MFPAC)方法,用于实现无人水面飞行器(USV)在复杂环境中的轨迹跟踪和避障。MFPAC 用于解决 USV 系统动力学建模中的不确定性,无需 USV 的精确数学模型。此外,还采用了反步进方法来消除旋转特性,使 MFPAC 能够直接应用于 USV 控制。在虚拟控制法则的计算中,MPC 用于运动学,易于建模,同时具有避障性能。通过利用无模型 ESO 估算额外的未知扰动,该方法无需预先了解系统的动态。稳定性分析表明,所提出的控制策略具有有界输入和有界输出(BIBO)稳定性。仿真结果验证了该算法的有效性和先进性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Control Automation and Systems
International Journal of Control Automation and Systems 工程技术-自动化与控制系统
CiteScore
5.80
自引率
21.90%
发文量
343
审稿时长
8.7 months
期刊介绍: International Journal of Control, Automation and Systems is a joint publication of the Institute of Control, Robotics and Systems (ICROS) and the Korean Institute of Electrical Engineers (KIEE). The journal covers three closly-related research areas including control, automation, and systems. The technical areas include Control Theory Control Applications Robotics and Automation Intelligent and Information Systems The Journal addresses research areas focused on control, automation, and systems in electrical, mechanical, aerospace, chemical, and industrial engineering in order to create a strong synergy effect throughout the interdisciplinary research areas.
期刊最新文献
The Dynamical Model and the Slithering Controller of Continuous Snakelike Robot on Smooth Surface Adaptive Back-stepping Control of Servo Systems With Asymmetric Dead Zone Optimal Stealthy Attack With Side Information Under the Energy Constraint on Remote State Estimation Finite-time Stabilization of Fractional-order Impulsive Switched Systems With Saturated Control Input Tracking Control Design for a Bilinear Control System With Unstable and Uncertain Internal Dynamics Using Adaptive Backstepping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1