Optimized Proportional-derivative Feedback-assisted Iterative Learning Control for Manipulator Trajectory Tracking

IF 2.5 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS International Journal of Control Automation and Systems Pub Date : 2024-05-28 DOI:10.1007/s12555-023-0350-6
Dong Yan, Liping Chen, Jianwan Ding, Ziyao Xiong, Yu Chen
{"title":"Optimized Proportional-derivative Feedback-assisted Iterative Learning Control for Manipulator Trajectory Tracking","authors":"Dong Yan, Liping Chen, Jianwan Ding, Ziyao Xiong, Yu Chen","doi":"10.1007/s12555-023-0350-6","DOIUrl":null,"url":null,"abstract":"<p>Iterative learning control (ILC) is a popular scheme in the trajectory tracking of manipulators, greatly improving tracking accuracy despite often requiring multiple iterations over identical trajectories. This research introduces an optimization technique for ILC parameters, enhanced with proportional-derivative (PD) feedback control, which aims to significantly reduce tracking errors within a single iteration. In the proposed approach, a PD feedback controller is utilized in the first run, collecting error data. An ILC controller is then incorporated in the second run to minimize the tracking error. Utilizing the dynamic model of the system, the transcription method transforms the continuous-form optimization problem concerning the ILC parameters into a discrete form, enabling its solution via standard numerical optimization algorithms. To demonstrate the effectiveness of the proposed approach in reducing tracking errors, we compared the tracking errors for the first and second runs of the system using frequency-domain analysis and conducted simulations and experiments on two different trajectory types.</p>","PeriodicalId":54965,"journal":{"name":"International Journal of Control Automation and Systems","volume":"58 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Control Automation and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12555-023-0350-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Iterative learning control (ILC) is a popular scheme in the trajectory tracking of manipulators, greatly improving tracking accuracy despite often requiring multiple iterations over identical trajectories. This research introduces an optimization technique for ILC parameters, enhanced with proportional-derivative (PD) feedback control, which aims to significantly reduce tracking errors within a single iteration. In the proposed approach, a PD feedback controller is utilized in the first run, collecting error data. An ILC controller is then incorporated in the second run to minimize the tracking error. Utilizing the dynamic model of the system, the transcription method transforms the continuous-form optimization problem concerning the ILC parameters into a discrete form, enabling its solution via standard numerical optimization algorithms. To demonstrate the effectiveness of the proposed approach in reducing tracking errors, we compared the tracking errors for the first and second runs of the system using frequency-domain analysis and conducted simulations and experiments on two different trajectory types.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于机械手轨迹跟踪的优化比例-衍生反馈辅助迭代学习控制
迭代学习控制(ILC)是机械手轨迹跟踪中的一种常用方案,尽管通常需要在相同轨迹上进行多次迭代,但却能大大提高跟踪精度。本研究介绍了一种 ILC 参数优化技术,该技术通过比例-派生 (PD) 反馈控制进行增强,旨在单次迭代内显著降低跟踪误差。在所提出的方法中,第一次运行时使用 PD 反馈控制器,收集误差数据。然后在第二次运行中采用 ILC 控制器,以最大限度地减小跟踪误差。利用系统的动态模型,转录方法将有关 ILC 参数的连续形式优化问题转化为离散形式,使其能够通过标准数值优化算法求解。为了证明所提方法在减少跟踪误差方面的有效性,我们利用频域分析比较了系统第一次和第二次运行的跟踪误差,并对两种不同的轨迹类型进行了模拟和实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Control Automation and Systems
International Journal of Control Automation and Systems 工程技术-自动化与控制系统
CiteScore
5.80
自引率
21.90%
发文量
343
审稿时长
8.7 months
期刊介绍: International Journal of Control, Automation and Systems is a joint publication of the Institute of Control, Robotics and Systems (ICROS) and the Korean Institute of Electrical Engineers (KIEE). The journal covers three closly-related research areas including control, automation, and systems. The technical areas include Control Theory Control Applications Robotics and Automation Intelligent and Information Systems The Journal addresses research areas focused on control, automation, and systems in electrical, mechanical, aerospace, chemical, and industrial engineering in order to create a strong synergy effect throughout the interdisciplinary research areas.
期刊最新文献
The Dynamical Model and the Slithering Controller of Continuous Snakelike Robot on Smooth Surface Adaptive Back-stepping Control of Servo Systems With Asymmetric Dead Zone Optimal Stealthy Attack With Side Information Under the Energy Constraint on Remote State Estimation Finite-time Stabilization of Fractional-order Impulsive Switched Systems With Saturated Control Input Tracking Control Design for a Bilinear Control System With Unstable and Uncertain Internal Dynamics Using Adaptive Backstepping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1