Automatic detection and assessment of crack development in ultra-high performance concrete in the spatial and Fourier domains

IF 2.9 3区 工程技术 Q2 ENGINEERING, CIVIL Frontiers of Structural and Civil Engineering Pub Date : 2024-05-28 DOI:10.1007/s11709-024-1042-x
Jixing Cao, Yao Zhang, Haijie He, Weibing Peng, Weigang Zhao, Zhiguo Yan, Hehua Zhu
{"title":"Automatic detection and assessment of crack development in ultra-high performance concrete in the spatial and Fourier domains","authors":"Jixing Cao, Yao Zhang, Haijie He, Weibing Peng, Weigang Zhao, Zhiguo Yan, Hehua Zhu","doi":"10.1007/s11709-024-1042-x","DOIUrl":null,"url":null,"abstract":"<p>Automatic detection and assessment of surface cracks are beneficial for understanding the mechanical performance of ultra-high performance concrete (UHPC). This study detects crack evolution using a novel dynamic mode decomposition (DMD) method. In this method, the sparse matrix ‘determined’ from images is used to reconstruct the foreground that contains cracks, and the global threshold method is adopted to extract the crack patterns. The application of the DMD method to the three-point bending test demonstrates the efficiency in inspecting cracks with high accuracy. Accordingly, the geometric features, including the area and its projection in two major directions, are evaluated over time. The relationship between the geometric properties of cracks and load-displacement curves of UHPC is discussed. Due to the irregular shape of cracks in the spatial domain, the cracks are then transformed into the Fourier domain to assess their development. Results indicate that crack patterns in the Fourier domain exhibit a distinct concentration around a central position. Moreover, the power spectral density of cracks exhibits an increasing trend over time. The investigation into crack evolution in both the spatial and Fourier domains contributes significantly to elucidating the mechanical behavior of UHPC.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"30 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-024-1042-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic detection and assessment of surface cracks are beneficial for understanding the mechanical performance of ultra-high performance concrete (UHPC). This study detects crack evolution using a novel dynamic mode decomposition (DMD) method. In this method, the sparse matrix ‘determined’ from images is used to reconstruct the foreground that contains cracks, and the global threshold method is adopted to extract the crack patterns. The application of the DMD method to the three-point bending test demonstrates the efficiency in inspecting cracks with high accuracy. Accordingly, the geometric features, including the area and its projection in two major directions, are evaluated over time. The relationship between the geometric properties of cracks and load-displacement curves of UHPC is discussed. Due to the irregular shape of cracks in the spatial domain, the cracks are then transformed into the Fourier domain to assess their development. Results indicate that crack patterns in the Fourier domain exhibit a distinct concentration around a central position. Moreover, the power spectral density of cracks exhibits an increasing trend over time. The investigation into crack evolution in both the spatial and Fourier domains contributes significantly to elucidating the mechanical behavior of UHPC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在空间域和傅立叶域自动检测和评估超高性能混凝土的裂缝发展情况
表面裂缝的自动检测和评估有助于了解超高性能混凝土(UHPC)的力学性能。本研究采用新型动态模式分解 (DMD) 方法检测裂缝演变。在该方法中,利用从图像中 "确定 "的稀疏矩阵来重建包含裂缝的前景,并采用全局阈值法来提取裂缝模式。DMD 方法在三点弯曲测试中的应用证明了其在高精度检测裂纹方面的高效性。此外,还评估了随时间变化的几何特征,包括面积及其在两个主要方向上的投影。讨论了裂缝几何特性与 UHPC 载荷-位移曲线之间的关系。由于裂缝在空间域中的形状不规则,因此将裂缝转换到傅立叶域以评估其发展情况。结果表明,傅立叶域中的裂纹图案在中心位置周围呈现明显的集中。此外,随着时间的推移,裂纹的功率谱密度呈上升趋势。对空间域和傅立叶域中裂纹演变的研究大大有助于阐明超高性能混凝土的力学行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
3.30%
发文量
734
期刊介绍: Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.
期刊最新文献
An artificial neural network based deep collocation method for the solution of transient linear and nonlinear partial differential equations Bibliographic survey and comprehensive review on mechanical and durability properties of microorganism based self-healing concrete Seismic response of pile-supported structures considering the coupling of inertial and kinematic interactions in different soil sites An isogeometric approach for nonlocal bending and free oscillation of magneto-electro-elastic functionally graded nanobeam with elastic constraints Shaking table test on a tunnel-group metro station in rock site under harmonic excitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1