Fu Fan, Fanwei Meng, Yunqi Ma, Hongping Bao, Zhanrong Ma, Saif Ur Rehman
{"title":"Mechanisms Underlying the Bromine Anomaly in the Brine of the Jingbian Gas Field, Ordos Basin, Northwestern China","authors":"Fu Fan, Fanwei Meng, Yunqi Ma, Hongping Bao, Zhanrong Ma, Saif Ur Rehman","doi":"10.1007/s10498-024-09431-w","DOIUrl":null,"url":null,"abstract":"<div><p>Bromine (Br) is a vital chemical raw material primarily obtained from marine brine. The bromine/chlorine (Br/Cl) ratio serves as a crucial indicator for predicting marine potash mineralization in evaporites. As salinity increases, bromine gradually accumulates through evaporation in residual brine. During the process of brine evaporation to the potassium salt stage, the bromine content in the brine can exceed 1000 ppm. The marine brine sourced from the weathering crust reservoir at the top of the Ordovician Majiagou Formation in the Jingbian gas field, Ordos Basin, in northwestern China, displays an exceptionally high bromine content (averaging 1590 ppm), surpassing levels found in contemporary seawater. Based on analysis of major compositions, only brine evaporates to the gypsum stage. Despite extensive exploration in the region, large-scale potassium salt deposits have not been identified. This heightened concentration of bromine in low salinity brine suggests supplementation from additional organic bromine sources. The strata adjacent to the high-bromine oil field water in the Jingbian gas field, Ordos Basin, consist of the Ordovician marine evaporite strata of the Majiagou Formation and the overlying Carboniferous and Permian marine and continental deposits rich in fossil algae. Interactions between hydrocarbons and oilfield water contribute to the notable bromine anomaly observed in the Jingbian gas field in the Ordos Basin. Elevated bromine levels have also been noted in brine from various oil fields worldwide. Through an analysis of the major compositions of brines and bromine, this study will elucidate the reasons behind the presence of high bromine brines.</p></div>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"30 3","pages":"201 - 217"},"PeriodicalIF":1.7000,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10498-024-09431-w","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Bromine (Br) is a vital chemical raw material primarily obtained from marine brine. The bromine/chlorine (Br/Cl) ratio serves as a crucial indicator for predicting marine potash mineralization in evaporites. As salinity increases, bromine gradually accumulates through evaporation in residual brine. During the process of brine evaporation to the potassium salt stage, the bromine content in the brine can exceed 1000 ppm. The marine brine sourced from the weathering crust reservoir at the top of the Ordovician Majiagou Formation in the Jingbian gas field, Ordos Basin, in northwestern China, displays an exceptionally high bromine content (averaging 1590 ppm), surpassing levels found in contemporary seawater. Based on analysis of major compositions, only brine evaporates to the gypsum stage. Despite extensive exploration in the region, large-scale potassium salt deposits have not been identified. This heightened concentration of bromine in low salinity brine suggests supplementation from additional organic bromine sources. The strata adjacent to the high-bromine oil field water in the Jingbian gas field, Ordos Basin, consist of the Ordovician marine evaporite strata of the Majiagou Formation and the overlying Carboniferous and Permian marine and continental deposits rich in fossil algae. Interactions between hydrocarbons and oilfield water contribute to the notable bromine anomaly observed in the Jingbian gas field in the Ordos Basin. Elevated bromine levels have also been noted in brine from various oil fields worldwide. Through an analysis of the major compositions of brines and bromine, this study will elucidate the reasons behind the presence of high bromine brines.
期刊介绍:
We publish original studies relating to the geochemistry of natural waters and their interactions with rocks and minerals under near Earth-surface conditions. Coverage includes theoretical, experimental, and modeling papers dealing with this subject area, as well as papers presenting observations of natural systems that stress major processes. The journal also presents `letter''-type papers for rapid publication and a limited number of review-type papers on topics of particularly broad interest or current major controversy.