The role of PALLD-STAT3 interaction in megakaryocyte differentiation and thrombocytopenia treatment.

IF 8.2 1区 医学 Q1 HEMATOLOGY Haematologica Pub Date : 2024-11-01 DOI:10.3324/haematol.2024.285242
Guoming Li, Haojie Jiang, Lingbin Wang, Tingting Liang, Chen Ding, Mina Yang, Yingzhi Shen, Min Xin, Lin Zhang, Jing Dai, Xueqing Sun, Xuejiao Chen, Junling Liu, Yanyan Xu
{"title":"The role of PALLD-STAT3 interaction in megakaryocyte differentiation and thrombocytopenia treatment.","authors":"Guoming Li, Haojie Jiang, Lingbin Wang, Tingting Liang, Chen Ding, Mina Yang, Yingzhi Shen, Min Xin, Lin Zhang, Jing Dai, Xueqing Sun, Xuejiao Chen, Junling Liu, Yanyan Xu","doi":"10.3324/haematol.2024.285242","DOIUrl":null,"url":null,"abstract":"<p><p>Impaired differentiation of megakaryocytes constitutes the principal etiology of thrombocytopenia. The signal transducer and activator of transcription 3 (STAT3) is a crucial transcription factor in regulating megakaryocyte differentiation, however the precise mechanism of its activation remains unclear. PALLD, an actin-associated protein, has been increasingly recognized for its essential functions in multiple biological processes. This study revealed that megakaryocyte/platelet-specific knockout of Palld in mice exhibited thrombocytopenia due to diminished platelet biogenesis. In megakaryocytes, PALLD deficiency led to impaired proplatelet formation and polyploidization, ultimately weakening their differentiation for platelet production. Mechanistic studies demonstrated that PALLD bound to STAT3 and interacted with its DNA-binding domain and Src homology 2 domain via immunoglobulin domain 3. Moreover, the absence of PALLD attenuated STAT3 Y705 phosphorylation and impeded STAT3 nuclear translocation. Based on the PALLD-STAT3 binding sequence, we designed a peptide C-P3, which can facilitate megakaryocyte differentiation and accelerate platelet production in vivo. In conclusion, this study highlights the pivotal role of PALLD in megakaryocyte differentiation and proposes a novel approach for treating thrombocytopenia by targeting the PALLD-STAT3 interaction.</p>","PeriodicalId":12964,"journal":{"name":"Haematologica","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532707/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Haematologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3324/haematol.2024.285242","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Impaired differentiation of megakaryocytes constitutes the principal etiology of thrombocytopenia. The signal transducer and activator of transcription 3 (STAT3) is a crucial transcription factor in regulating megakaryocyte differentiation, however the precise mechanism of its activation remains unclear. PALLD, an actin-associated protein, has been increasingly recognized for its essential functions in multiple biological processes. This study revealed that megakaryocyte/platelet-specific knockout of Palld in mice exhibited thrombocytopenia due to diminished platelet biogenesis. In megakaryocytes, PALLD deficiency led to impaired proplatelet formation and polyploidization, ultimately weakening their differentiation for platelet production. Mechanistic studies demonstrated that PALLD bound to STAT3 and interacted with its DNA-binding domain and Src homology 2 domain via immunoglobulin domain 3. Moreover, the absence of PALLD attenuated STAT3 Y705 phosphorylation and impeded STAT3 nuclear translocation. Based on the PALLD-STAT3 binding sequence, we designed a peptide C-P3, which can facilitate megakaryocyte differentiation and accelerate platelet production in vivo. In conclusion, this study highlights the pivotal role of PALLD in megakaryocyte differentiation and proposes a novel approach for treating thrombocytopenia by targeting the PALLD-STAT3 interaction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PALLD-STAT3相互作用在巨核细胞分化和血小板减少治疗中的作用
巨核细胞分化障碍是血小板减少症的主要病因。转录信号转导和激活因子 3(STAT3)是调节巨核细胞分化的关键转录因子,但其激活的确切机制仍不清楚。PALLD是一种肌动蛋白相关蛋白,其在多种生物过程中的重要功能已被越来越多的人所认识。本研究发现,小鼠巨核细胞/血小板特异性敲除 PALLD 后,由于血小板生物生成减少,表现出血小板减少。在巨核细胞中,PALLD的缺乏导致原血小板形成和多倍体化受损,最终削弱了它们产生血小板的分化能力。机理研究表明,PALLD与STAT3结合,并通过免疫球蛋白结构域3(Ig3)与其DNA结合结构域(DBD)和Src homology 2(SH2)结构域相互作用。此外,PALLD的缺失会减弱STAT3 Y705的磷酸化并阻碍STAT3的核转位。根据 PALLD 与 STAT3 的结合序列,我们设计了一种多肽 C-P3,它能促进巨核细胞分化并加速体内血小板的生成。总之,本研究强调了 PALLD 在巨核细胞分化中的关键作用,并提出了一种通过靶向 PALLD-STAT3 相互作用治疗血小板减少症的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Haematologica
Haematologica 医学-血液学
CiteScore
14.10
自引率
2.00%
发文量
349
审稿时长
3-6 weeks
期刊介绍: Haematologica is a journal that publishes articles within the broad field of hematology. It reports on novel findings in basic, clinical, and translational research. Scope: The scope of the journal includes reporting novel research results that: Have a significant impact on understanding normal hematology or the development of hematological diseases. Are likely to bring important changes to the diagnosis or treatment of hematological diseases.
期刊最新文献
Arsenic trioxide versus Realgar-Indigo naturalis formula in non-high-risk acute promyelocytic leukemia: a multicenter, randomized trial. Comparison of EasyM, a clonotypic mass spectrometry assay, and EuroFlow minimal residual disease assessment in multiple myeloma. Cumulative review of hypertension in patients with chronic lymphocytic leukemia treated with acalabrutinib. Von Willebrand Disease and Angiodysplasia: a wider view of pathogenesis in pursuit of therapy. Outcomes with intensive treatment for acute myeloid leukemia: an analysis of two decades of data from the HARMONY Alliance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1