Ryan Cook, Marco A Crisci, Hannah V Pye, Andrea Telatin, Evelien M Adriaenssens, Joanne M Santini
{"title":"Decoding huge phage diversity: a taxonomic classification of Lak megaphages.","authors":"Ryan Cook, Marco A Crisci, Hannah V Pye, Andrea Telatin, Evelien M Adriaenssens, Joanne M Santini","doi":"10.1099/jgv.0.001997","DOIUrl":null,"url":null,"abstract":"<p><p>High-throughput sequencing for uncultivated viruses has accelerated the understanding of global viral diversity and uncovered viral genomes substantially larger than any that have so far been cultured. Notably, the Lak phages are an enigmatic group of viruses that present some of the largest known phage genomes identified in human and animal microbiomes, and are dissimilar to any cultivated viruses. Despite the wealth of viral diversity that exists within sequencing datasets, uncultivated viruses have rarely been used for taxonomic classification. We investigated the evolutionary relationships of 23 Lak phages and propose a taxonomy for their classification. Predicted protein analysis revealed the Lak phages formed a deeply branching monophyletic clade within the class <i>Caudoviricetes</i> which contained no other phage genomes. One of the interesting features of this clade is that all current members are characterised by an alternative genetic code. We propose the Lak phages belong to a new order, the 'Grandevirales'. Protein and nucleotide-based analyses support the creation of two families, three sub-families, and four genera within the order 'Grandevirales'. We anticipate that the proposed taxonomy of Lak megaphages will simplify the future classification of related viral genomes as they are uncovered. Continued efforts to classify divergent viruses are crucial to aid common analyses of viral genomes and metagenomes.</p>","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"105 5","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165621/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1099/jgv.0.001997","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
High-throughput sequencing for uncultivated viruses has accelerated the understanding of global viral diversity and uncovered viral genomes substantially larger than any that have so far been cultured. Notably, the Lak phages are an enigmatic group of viruses that present some of the largest known phage genomes identified in human and animal microbiomes, and are dissimilar to any cultivated viruses. Despite the wealth of viral diversity that exists within sequencing datasets, uncultivated viruses have rarely been used for taxonomic classification. We investigated the evolutionary relationships of 23 Lak phages and propose a taxonomy for their classification. Predicted protein analysis revealed the Lak phages formed a deeply branching monophyletic clade within the class Caudoviricetes which contained no other phage genomes. One of the interesting features of this clade is that all current members are characterised by an alternative genetic code. We propose the Lak phages belong to a new order, the 'Grandevirales'. Protein and nucleotide-based analyses support the creation of two families, three sub-families, and four genera within the order 'Grandevirales'. We anticipate that the proposed taxonomy of Lak megaphages will simplify the future classification of related viral genomes as they are uncovered. Continued efforts to classify divergent viruses are crucial to aid common analyses of viral genomes and metagenomes.
期刊介绍:
JOURNAL OF GENERAL VIROLOGY (JGV), a journal of the Society for General Microbiology (SGM), publishes high-calibre research papers with high production standards, giving the journal a worldwide reputation for excellence and attracting an eminent audience.