{"title":"METTL14/YTHDC1-Mediated m6A Modification in Hippocampus Improves Pentylenetetrazol-Induced Acute Seizures.","authors":"Xiaolin Zhong, Ling Chen, Yajuan Wang, Yue Liang, Yanmei Huang, Zuyao Chen, Wenyu Cao, Jianghua Liu, Xuyu Zu","doi":"10.1007/s12035-024-04252-y","DOIUrl":null,"url":null,"abstract":"<p><p>Epilepsy is a common neurological disorder which can cause significant morbidity and mortality. N6-methyladenosine (m6A), the most common chemical epigenetic modification among mRNA post-transcriptional modifications, implicated in various physiological and pathological processes, but its role in epilepsy is still unknown. Here, we provide strong evidences in support of an association of m6A and its regulatory proteins with epilepsy. Our results indicated that the level of m6A was declined significantly in the dentate gyrus (DG) of hippocampus of pentylenetetrazol (PTZ)-induced seizure mice. Both the seizure-like behaviors and the excessive activation of DG area neuron were significantly mitigated after the administration of m6A agonist betaine. Mechanically, we found that both the m6A methyltransferase METTL14 and recognition protein YTHDC1 were decreased by PTZ stimulation, which might contribute to the reduced m6A level. Additionally, DG-specific over-expression of METTL14 or YTHDC1 by lentivirus injection could significantly ameliorate seizure-like behaviors and prevent the excessive activation of neuron in epilepsy mice induced by PTZ injection, which might be due to the normalized m6A level. Together, this study identified that METTL14/YTHDC1-mediated m6A modification could participate in seizure-like behaviors, which might provide m6A regulation as a potential and novel therapeutic strategy for epilepsy.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"10979-10991"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-024-04252-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Epilepsy is a common neurological disorder which can cause significant morbidity and mortality. N6-methyladenosine (m6A), the most common chemical epigenetic modification among mRNA post-transcriptional modifications, implicated in various physiological and pathological processes, but its role in epilepsy is still unknown. Here, we provide strong evidences in support of an association of m6A and its regulatory proteins with epilepsy. Our results indicated that the level of m6A was declined significantly in the dentate gyrus (DG) of hippocampus of pentylenetetrazol (PTZ)-induced seizure mice. Both the seizure-like behaviors and the excessive activation of DG area neuron were significantly mitigated after the administration of m6A agonist betaine. Mechanically, we found that both the m6A methyltransferase METTL14 and recognition protein YTHDC1 were decreased by PTZ stimulation, which might contribute to the reduced m6A level. Additionally, DG-specific over-expression of METTL14 or YTHDC1 by lentivirus injection could significantly ameliorate seizure-like behaviors and prevent the excessive activation of neuron in epilepsy mice induced by PTZ injection, which might be due to the normalized m6A level. Together, this study identified that METTL14/YTHDC1-mediated m6A modification could participate in seizure-like behaviors, which might provide m6A regulation as a potential and novel therapeutic strategy for epilepsy.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.