A Submesoscale Eddy Identification Dataset in the Northwest Pacific Ocean Derived from GOCI I Chlorophyll–a Data based on Deep Learning

IF 11.2 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Earth System Science Data Pub Date : 2024-05-30 DOI:10.5194/essd-2024-188
Yan Wang, Jie Yang, Ge Chen
{"title":"A Submesoscale Eddy Identification Dataset in the Northwest Pacific Ocean Derived from GOCI I Chlorophyll–a Data based on Deep Learning","authors":"Yan Wang, Jie Yang, Ge Chen","doi":"10.5194/essd-2024-188","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> This paper presents an observational dataset on submesoscale eddies obtained from high–resolution chlorophyll–a data captured by GOCI I. Our methodology involves a combination of digital image processing, filtering, and object detection techniques, along with specific chlorophyll–a image enhancement procedure to extract essential information about submesoscale eddies. This information includes their time, polarity, geographical coordinates of the eddy center, eddy radius, coordinates of the upper left and lower right corners of the prediction box, area of the eddy's inner ellipse, and confidence score. The dataset spans eight time intervals, ranging from 00:00 to 08:00 (UTC) daily, covering the period from April 1, 2011, to March 31, 2021. A total of 19,136 anticyclonic eddies and 93,897 cyclonic eddies were identified with a confidence minimum of 0.2. The mean radius of anticyclonic eddies is 24.44 km (range 2.5 km to 44.25 km), while that of cyclonic eddies is 12.34 km (range 1.75 km to 44 km). This unprecedented hourly resolution dataset on submesoscale eddies offers valuable insights into their distribution, morphology, and energy dissipation. It significantly contributes to our understanding of marine environments, ecosystems and the improvement of climate model predictions. The dataset is available at https://doi.org/10.5281/zenodo.7694115 (Wang and Yang, 2023).","PeriodicalId":48747,"journal":{"name":"Earth System Science Data","volume":"72 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/essd-2024-188","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. This paper presents an observational dataset on submesoscale eddies obtained from high–resolution chlorophyll–a data captured by GOCI I. Our methodology involves a combination of digital image processing, filtering, and object detection techniques, along with specific chlorophyll–a image enhancement procedure to extract essential information about submesoscale eddies. This information includes their time, polarity, geographical coordinates of the eddy center, eddy radius, coordinates of the upper left and lower right corners of the prediction box, area of the eddy's inner ellipse, and confidence score. The dataset spans eight time intervals, ranging from 00:00 to 08:00 (UTC) daily, covering the period from April 1, 2011, to March 31, 2021. A total of 19,136 anticyclonic eddies and 93,897 cyclonic eddies were identified with a confidence minimum of 0.2. The mean radius of anticyclonic eddies is 24.44 km (range 2.5 km to 44.25 km), while that of cyclonic eddies is 12.34 km (range 1.75 km to 44 km). This unprecedented hourly resolution dataset on submesoscale eddies offers valuable insights into their distribution, morphology, and energy dissipation. It significantly contributes to our understanding of marine environments, ecosystems and the improvement of climate model predictions. The dataset is available at https://doi.org/10.5281/zenodo.7694115 (Wang and Yang, 2023).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的 GOCI I 叶绿素-a 数据生成的西北太平洋次主题尺度涡流识别数据集
摘要本文介绍了从全球海洋观测指标 I 获取的高分辨率叶绿素-a 数据中获得的一个关于副旋涡的观测数据集。我们的方法是结合数字图像处理、滤波和目标检测技术,以及特定的叶绿素-a 图像增强程序,来提取有关次主题尺度漩涡的基本信息。这些信息包括时间、极性、漩涡中心地理坐标、漩涡半径、预测框左上角和右下角坐标、漩涡内椭圆面积和置信度。数据集跨越八个时间段,从每天 00:00 到 08:00(UTC),时间跨度为 2011 年 4 月 1 日至 2021 年 3 月 31 日。共识别出 19,136 个反气旋涡和 93,897 个气旋涡,置信度最小为 0.2。反气旋涡的平均半径为 24.44 千米(范围为 2.5 千米至 44.25 千米),气旋涡的平均半径为 12.34 千米(范围为 1.75 千米至 44 千米)。这一前所未有的亚中尺度漩涡小时分辨率数据集为我们深入了解漩涡的分布、形态和能量耗散提供了宝贵的资料。它极大地促进了我们对海洋环境和生态系统的了解,并有助于改进气候模式预测。该数据集可在 https://doi.org/10.5281/zenodo.7694115(Wang and Yang,2023)上查阅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Earth System Science Data
Earth System Science Data GEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
18.00
自引率
5.30%
发文量
231
审稿时长
35 weeks
期刊介绍: Earth System Science Data (ESSD) is an international, interdisciplinary journal that publishes articles on original research data in order to promote the reuse of high-quality data in the field of Earth system sciences. The journal welcomes submissions of original data or data collections that meet the required quality standards and have the potential to contribute to the goals of the journal. It includes sections dedicated to regular-length articles, brief communications (such as updates to existing data sets), commentaries, review articles, and special issues. ESSD is abstracted and indexed in several databases, including Science Citation Index Expanded, Current Contents/PCE, Scopus, ADS, CLOCKSS, CNKI, DOAJ, EBSCO, Gale/Cengage, GoOA (CAS), and Google Scholar, among others.
期刊最新文献
A new repository of electrical resistivity tomography and ground-penetrating radar data from summer 2022 near Ny-Ålesund, Svalbard CCD-Rice: A long-term paddy rice distribution dataset in China at 30 m resolution SMOS-derived Antarctic thin sea ice thickness: data description and validation in the Weddell Sea Global Greenhouse Gas Reconciliation 2022 A daily reconstructed chlorophyll-a dataset in the South China Sea from MODIS using OI-SwinUnet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1