Nanoparticle-Mediated Immunotherapy in Triple-Negative Breast Cancer

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2024-05-30 DOI:10.1021/acsbiomaterials.4c00108
Ruoyi Wang, Xu Huang, Xiaoxi Chen and Yingchao Zhang*, 
{"title":"Nanoparticle-Mediated Immunotherapy in Triple-Negative Breast Cancer","authors":"Ruoyi Wang,&nbsp;Xu Huang,&nbsp;Xiaoxi Chen and Yingchao Zhang*,&nbsp;","doi":"10.1021/acsbiomaterials.4c00108","DOIUrl":null,"url":null,"abstract":"<p >Triple-negative breast cancer (TNBC) is an aggressive subtype with the worst prognosis and highest recurrence rates. The treatment choices are limited due to the scarcity of endocrine and HER2 targets, except for chemotherapy. However, the side effects of chemotherapy restrict its long-term usage. Immunotherapy shows potential as a promising therapeutic strategy, such as inducing immunogenic cell death, immune checkpoint therapy, and immune adjuvant therapy. Nanotechnology offers unique advantages in the field of immunotherapy, such as improved delivery and targeted release of immunotherapeutic agents and enhanced bioavailability of immunomodulators. As well as the potential for combination therapy synergistically enhanced by nanocarriers. Nanoparticles-based combined application of multiple immunotherapies is designed to take the tactics of enhancing immunogenicity and reversing immunosuppression. Moreover, the increasing abundance of biomedical materials holds more promise for the development of this field. This review summarizes the advances in the field of nanoparticle-mediated immunotherapy in terms of both immune strategies for treatment and the development of biomaterials and presents challenges and hopes for the future.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomaterials.4c00108","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomaterials.4c00108","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Triple-negative breast cancer (TNBC) is an aggressive subtype with the worst prognosis and highest recurrence rates. The treatment choices are limited due to the scarcity of endocrine and HER2 targets, except for chemotherapy. However, the side effects of chemotherapy restrict its long-term usage. Immunotherapy shows potential as a promising therapeutic strategy, such as inducing immunogenic cell death, immune checkpoint therapy, and immune adjuvant therapy. Nanotechnology offers unique advantages in the field of immunotherapy, such as improved delivery and targeted release of immunotherapeutic agents and enhanced bioavailability of immunomodulators. As well as the potential for combination therapy synergistically enhanced by nanocarriers. Nanoparticles-based combined application of multiple immunotherapies is designed to take the tactics of enhancing immunogenicity and reversing immunosuppression. Moreover, the increasing abundance of biomedical materials holds more promise for the development of this field. This review summarizes the advances in the field of nanoparticle-mediated immunotherapy in terms of both immune strategies for treatment and the development of biomaterials and presents challenges and hopes for the future.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米粒子介导的三阴性乳腺癌免疫疗法
三阴性乳腺癌(TNBC)是一种侵袭性亚型,预后最差,复发率最高。由于缺乏内分泌和 HER2 靶点,除了化疗外,治疗选择非常有限。然而,化疗的副作用限制了其长期使用。免疫疗法作为一种有潜力的治疗策略,如诱导免疫原性细胞死亡、免疫检查点疗法和免疫辅助疗法,显示出巨大的潜力。纳米技术在免疫疗法领域具有独特的优势,如改善免疫治疗药物的输送和定向释放,提高免疫调节剂的生物利用度。纳米载体还具有协同增强联合疗法的潜力。基于纳米颗粒的多种免疫疗法联合应用旨在采取增强免疫原性和逆转免疫抑制的策略。此外,生物医学材料的日益丰富也为这一领域的发展带来了更多希望。本综述总结了纳米粒子介导的免疫疗法领域在免疫治疗策略和生物材料开发两方面的进展,并提出了未来的挑战和希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Spatiotemporally Controlled Release of Etamsylate from Bioinspired Peptide-Functionalized Nanoparticles Arrests Bleeding Rapidly and Improves Clot Stability in a Rabbit Internal Hemorrhage Model. Composite Hydrogel Sealants for Annulus Fibrosus Repair. Tricompartmental Microcarriers with Controlled Release for Efficient Management of Parkinson's Disease. Moldable Plastics (Polycaprolactone) can be Acutely Toxic to Developing Zebrafish and Activate Nuclear Receptors in Mammalian Cells. Research Progress of Hydrogel Microneedles in Wound Management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1