Doubly robust proximal synthetic controls.

IF 1.4 4区 数学 Q3 BIOLOGY Biometrics Pub Date : 2024-03-27 DOI:10.1093/biomtc/ujae055
Hongxiang Qiu, Xu Shi, Wang Miao, Edgar Dobriban, Eric Tchetgen Tchetgen
{"title":"Doubly robust proximal synthetic controls.","authors":"Hongxiang Qiu, Xu Shi, Wang Miao, Edgar Dobriban, Eric Tchetgen Tchetgen","doi":"10.1093/biomtc/ujae055","DOIUrl":null,"url":null,"abstract":"<p><p>To infer the treatment effect for a single treated unit using panel data, synthetic control (SC) methods construct a linear combination of control units' outcomes that mimics the treated unit's pre-treatment outcome trajectory. This linear combination is subsequently used to impute the counterfactual outcomes of the treated unit had it not been treated in the post-treatment period, and used to estimate the treatment effect. Existing SC methods rely on correctly modeling certain aspects of the counterfactual outcome generating mechanism and may require near-perfect matching of the pre-treatment trajectory. Inspired by proximal causal inference, we obtain two novel nonparametric identifying formulas for the average treatment effect for the treated unit: one is based on weighting, and the other combines models for the counterfactual outcome and the weighting function. We introduce the concept of covariate shift to SCs to obtain these identification results conditional on the treatment assignment. We also develop two treatment effect estimators based on these two formulas and generalized method of moments. One new estimator is doubly robust: it is consistent and asymptotically normal if at least one of the outcome and weighting models is correctly specified. We demonstrate the performance of the methods via simulations and apply them to evaluate the effectiveness of a pneumococcal conjugate vaccine on the risk of all-cause pneumonia in Brazil.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140850/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae055","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To infer the treatment effect for a single treated unit using panel data, synthetic control (SC) methods construct a linear combination of control units' outcomes that mimics the treated unit's pre-treatment outcome trajectory. This linear combination is subsequently used to impute the counterfactual outcomes of the treated unit had it not been treated in the post-treatment period, and used to estimate the treatment effect. Existing SC methods rely on correctly modeling certain aspects of the counterfactual outcome generating mechanism and may require near-perfect matching of the pre-treatment trajectory. Inspired by proximal causal inference, we obtain two novel nonparametric identifying formulas for the average treatment effect for the treated unit: one is based on weighting, and the other combines models for the counterfactual outcome and the weighting function. We introduce the concept of covariate shift to SCs to obtain these identification results conditional on the treatment assignment. We also develop two treatment effect estimators based on these two formulas and generalized method of moments. One new estimator is doubly robust: it is consistent and asymptotically normal if at least one of the outcome and weighting models is correctly specified. We demonstrate the performance of the methods via simulations and apply them to evaluate the effectiveness of a pneumococcal conjugate vaccine on the risk of all-cause pneumonia in Brazil.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双稳健近端合成控制
为了利用面板数据推断单个受治疗单位的治疗效果,合成对照(SC)方法构建了一个对照单位结果的线性组合,模拟受治疗单位治疗前的结果轨迹。这种线性组合随后被用来估算受治疗单位在治疗后未接受治疗时的反事实结果,并用来估计治疗效果。现有的反事实方法依赖于对反事实结果产生机制的某些方面进行正确建模,可能需要对治疗前的轨迹进行近乎完美的匹配。受近似因果推理的启发,我们得到了两个新的非参数识别公式,用于识别治疗单位的平均治疗效果:一个基于加权,另一个结合了反事实结果模型和加权函数。我们在 SC 中引入了协变量转移的概念,以获得这些以治疗分配为条件的识别结果。我们还根据这两个公式和广义矩法开发了两个治疗效果估计器。其中一个新的估计器具有双重稳健性:如果至少有一个结果模型和加权模型是正确指定的,那么它就是一致的和渐近正态的。我们通过模拟演示了这些方法的性能,并将其用于评估肺炎球菌结合疫苗对巴西全因肺炎风险的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
期刊最新文献
Composite dyadic models for spatio-temporal data. ROMI: a randomized two-stage basket trial design to optimize doses for multiple indications. Bayesian network-guided sparse regression with flexible varying effects. Group sequential testing of a treatment effect using a surrogate marker. On network deconvolution for undirected graphs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1