cyTRBC1 evaluation rapidly identifies sCD3-negative peripheral T-cell lymphomas and reveals a novel type of sCD3-negative T-cell clone with uncertain significance.
Cong Lu, Mingyong Li, Jun Fu, Xiaoming Fan, Ling Zhong, Yanxin Li, Qian Xi
{"title":"cyTRBC1 evaluation rapidly identifies sCD3-negative peripheral T-cell lymphomas and reveals a novel type of sCD3-negative T-cell clone with uncertain significance.","authors":"Cong Lu, Mingyong Li, Jun Fu, Xiaoming Fan, Ling Zhong, Yanxin Li, Qian Xi","doi":"10.1002/cyto.b.22182","DOIUrl":null,"url":null,"abstract":"<p><p>The flow cytometry-based evaluation of TRBC1 expression has been demonstrated as a rapid and specific method for detecting T-cell clones in sCD3-positive TCRαβ+ mature T-cell lymphoma. The aim of the study was to validate the utility of surface (s) TRBC1 and cytoplastic (cy) TRBC1 assessment in detecting clonality of sCD3-negative peripheral T-cell lymphomas (PTCLs), as well as exploring the existence and characteristics of sCD3-negative clonal T-cell populations with uncertain significance (T-CUS). Evaluation of sTRBC1 and cyTRBC1 were assessed on 61 samples from 37 patients with sCD3-negative PTCLs, including 26 angioimmunoblastic T-cell lymphoma (AITL) patients and 11 non-AITL patients. The sCD3-negative T-CUS were screened from 1602 patients without T-cell malignancy and 100 healthy individuals. Additionally, the clonality of cells was further detected through T-cell gene rearrangement analysis. We demonstrated the monotypic expression patterns of cyTRBC1 in all sCD3-negative PTCLs. Utilizing the cyTRBC1 evaluation assay, we identified a novel and rare subtype of sCD3-negative T-CUS for the first time among 13 out of 1602 (0.8%) patients without T-cell malignancy. The clonality of these cells was further confirmed through T-cell gene rearrangement analysis. This subset exhibited characteristics such as sCD3-cyCD3 + CD4 + CD45RO+, closely resembling AITL rather than non-AITL. Further analysis revealed that sCD3-negative T-CUS exhibited a smaller clone size in the lymph node and mass specimens compared to AITL patients. However, the clone size of sCD3-negative T-CUS was significantly lower than that of non-AITL patients in both specimen groups. In conclusion, we validated the diagnostic utility of cyTRBC1 in detecting sCD3-negative T-cell clonality, provided a comprehensive analysis of sCD3-negative T-CUS, and established a framework and provided valuable insights for distinguishing sCD3-negative T-CUS from sCD3-negative PTCLs based on their phenotypic properties and clone size.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cyto.b.22182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The flow cytometry-based evaluation of TRBC1 expression has been demonstrated as a rapid and specific method for detecting T-cell clones in sCD3-positive TCRαβ+ mature T-cell lymphoma. The aim of the study was to validate the utility of surface (s) TRBC1 and cytoplastic (cy) TRBC1 assessment in detecting clonality of sCD3-negative peripheral T-cell lymphomas (PTCLs), as well as exploring the existence and characteristics of sCD3-negative clonal T-cell populations with uncertain significance (T-CUS). Evaluation of sTRBC1 and cyTRBC1 were assessed on 61 samples from 37 patients with sCD3-negative PTCLs, including 26 angioimmunoblastic T-cell lymphoma (AITL) patients and 11 non-AITL patients. The sCD3-negative T-CUS were screened from 1602 patients without T-cell malignancy and 100 healthy individuals. Additionally, the clonality of cells was further detected through T-cell gene rearrangement analysis. We demonstrated the monotypic expression patterns of cyTRBC1 in all sCD3-negative PTCLs. Utilizing the cyTRBC1 evaluation assay, we identified a novel and rare subtype of sCD3-negative T-CUS for the first time among 13 out of 1602 (0.8%) patients without T-cell malignancy. The clonality of these cells was further confirmed through T-cell gene rearrangement analysis. This subset exhibited characteristics such as sCD3-cyCD3 + CD4 + CD45RO+, closely resembling AITL rather than non-AITL. Further analysis revealed that sCD3-negative T-CUS exhibited a smaller clone size in the lymph node and mass specimens compared to AITL patients. However, the clone size of sCD3-negative T-CUS was significantly lower than that of non-AITL patients in both specimen groups. In conclusion, we validated the diagnostic utility of cyTRBC1 in detecting sCD3-negative T-cell clonality, provided a comprehensive analysis of sCD3-negative T-CUS, and established a framework and provided valuable insights for distinguishing sCD3-negative T-CUS from sCD3-negative PTCLs based on their phenotypic properties and clone size.