Characterization of self-templating catalytic amyloids.

4区 生物学 Q3 Biochemistry, Genetics and Molecular Biology Methods in enzymology Pub Date : 2024-01-01 Epub Date: 2024-04-16 DOI:10.1016/bs.mie.2024.04.004
Saroj K Rout, David Rhyner, Jason Greenwald, Roland Riek
{"title":"Characterization of self-templating catalytic amyloids.","authors":"Saroj K Rout, David Rhyner, Jason Greenwald, Roland Riek","doi":"10.1016/bs.mie.2024.04.004","DOIUrl":null,"url":null,"abstract":"<p><p>Amyloid aggregates with unique periodic structures have garnered significant attention due to their association with numerous diseases, including systemic amyloidoses and the neurodegenerative diseases Parkinson's, Alzheimer's, and Creutzfeld-Jakob. However, more recent investigations have expanded our understanding of amyloids, revealing their diverse functional biological roles. Amyloids have also been proposed to have played a significant role in prebiotic molecular evolution because of their exceptional stability, spontaneous formation in a prebiotic environment, catalytic and templating abilities, and cooperative interaction with fatty acids, polysaccharides, and nucleic acids. This chapter summarizes methods and techniques associated with studying short amyloidogenic peptides, including detailed procedures for investigating cross-templating and autocatalytic templating reactions. Since the work with amyloidogenic peptides and their aggregates present unique challenges, we have attempted to address these with essential details throughout the procedures. The lessons herein may be used in any amyloid-related research to ensure more reproducible results and reduce entrance barriers for researchers new to the field.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2024.04.004","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Amyloid aggregates with unique periodic structures have garnered significant attention due to their association with numerous diseases, including systemic amyloidoses and the neurodegenerative diseases Parkinson's, Alzheimer's, and Creutzfeld-Jakob. However, more recent investigations have expanded our understanding of amyloids, revealing their diverse functional biological roles. Amyloids have also been proposed to have played a significant role in prebiotic molecular evolution because of their exceptional stability, spontaneous formation in a prebiotic environment, catalytic and templating abilities, and cooperative interaction with fatty acids, polysaccharides, and nucleic acids. This chapter summarizes methods and techniques associated with studying short amyloidogenic peptides, including detailed procedures for investigating cross-templating and autocatalytic templating reactions. Since the work with amyloidogenic peptides and their aggregates present unique challenges, we have attempted to address these with essential details throughout the procedures. The lessons herein may be used in any amyloid-related research to ensure more reproducible results and reduce entrance barriers for researchers new to the field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自模板催化淀粉的特性。
具有独特周期性结构的淀粉样蛋白聚集体因其与多种疾病(包括全身性淀粉样变性病和神经退行性疾病帕金森氏症、阿尔茨海默氏症和克雅氏病)有关而备受关注。然而,最近的研究拓展了我们对淀粉样蛋白的认识,揭示了它们的多种生物学功能作用。淀粉样蛋白还被认为在前生物分子进化过程中发挥了重要作用,因为它们具有超强的稳定性、在前生物环境中自发形成、催化和模板化能力,以及与脂肪酸、多糖和核酸的协同作用。本章总结了研究淀粉样蛋白短肽的相关方法和技术,包括研究交叉模板和自催化模板反应的详细步骤。由于淀粉样蛋白生成肽及其聚集体的研究工作具有独特的挑战性,我们试图通过整个程序的基本细节来解决这些问题。本文中的经验可用于任何淀粉样蛋白相关研究,以确保获得更多可重复的结果,并减少新进入该领域的研究人员的入门门槛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Methods in enzymology
Methods in enzymology 生物-生化研究方法
CiteScore
2.90
自引率
0.00%
发文量
308
审稿时长
3-6 weeks
期刊介绍: The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.
期刊最新文献
Use of DNA forceps to measure receptor-ligand dissociation equilibrium constants in a single-molecule competition assay. Construction and operation of high-resolution magnetic tape head tweezers for measuring single-protein dynamics under force. Exploring the free energy landscape of proteins using magnetic tweezers. Force-fluorescence setup for observing protein-DNA interactions under load. High-speed measurements of SNARE-complexin interactions using magnetic tweezers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1