Unsupervised Stain Decomposition via Inversion Regulation for Multiplex Immunohistochemistry Images.

Shahira Abousamra, Danielle Fassler, Jiachen Yao, Rajarsi Gupta, Tahsin Kurc, Luisa Escobar-Hoyos, Dimitris Samaras, Kenneth Shroyer, Joel Saltz, Chao Chen
{"title":"Unsupervised Stain Decomposition via Inversion Regulation for Multiplex Immunohistochemistry Images.","authors":"Shahira Abousamra, Danielle Fassler, Jiachen Yao, Rajarsi Gupta, Tahsin Kurc, Luisa Escobar-Hoyos, Dimitris Samaras, Kenneth Shroyer, Joel Saltz, Chao Chen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Multiplex Immunohistochemistry (mIHC) is a cost-effective and accessible method for in situ labeling of multiple protein biomarkers in a tissue sample. By assigning a different stain to each biomarker, it allows the visualization of different types of cells within the tumor vicinity for downstream analysis. However, to detect different types of stains in a given mIHC image is a challenging problem, especially when the number of stains is high. Previous deep-learning-based methods mostly assume full supervision; yet the annotation can be costly. In this paper, we propose a novel unsupervised stain decomposition method to detect different stains simultaneously. Our method does not require any supervision, except for color samples of different stains. A main technical challenge is that the problem is underdetermined and can have multiple solutions. To conquer this issue, we propose a novel inversion regulation technique, which eliminates most undesirable solutions. On a 7-plexed IHC images dataset, the proposed method achieves high quality stain decomposition results without human annotation.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"227 ","pages":"74-94"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11138139/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multiplex Immunohistochemistry (mIHC) is a cost-effective and accessible method for in situ labeling of multiple protein biomarkers in a tissue sample. By assigning a different stain to each biomarker, it allows the visualization of different types of cells within the tumor vicinity for downstream analysis. However, to detect different types of stains in a given mIHC image is a challenging problem, especially when the number of stains is high. Previous deep-learning-based methods mostly assume full supervision; yet the annotation can be costly. In this paper, we propose a novel unsupervised stain decomposition method to detect different stains simultaneously. Our method does not require any supervision, except for color samples of different stains. A main technical challenge is that the problem is underdetermined and can have multiple solutions. To conquer this issue, we propose a novel inversion regulation technique, which eliminates most undesirable solutions. On a 7-plexed IHC images dataset, the proposed method achieves high quality stain decomposition results without human annotation.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过反转调节对多重免疫组化图像进行无监督污点分解
多重免疫组化(mIHC)是一种经济有效且易于使用的方法,可对组织样本中的多种蛋白质生物标记物进行原位标记。通过为每种生物标记物分配不同的染色剂,可以观察到肿瘤附近不同类型的细胞,以便进行下游分析。然而,在给定的 mIHC 图像中检测不同类型的染色剂是一个具有挑战性的问题,尤其是当染色剂数量较多时。以往基于深度学习的方法大多假定了完全的监督;但注释的成本可能很高。在本文中,我们提出了一种新颖的无监督污点分解方法来同时检测不同的污点。除了不同污渍的颜色样本,我们的方法不需要任何监督。一个主要的技术挑战是,该问题是一个未确定的问题,可能有多个解决方案。为了解决这个问题,我们提出了一种新颖的反转调节技术,它可以消除大多数不理想的解决方案。在 7 种复合物的 IHC 图像数据集上,所提出的方法无需人工标注即可获得高质量的染色分解结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contrastive Learning for Clinical Outcome Prediction with Partial Data Sources. Multi-Source Conformal Inference Under Distribution Shift. DISCRET: Synthesizing Faithful Explanations For Treatment Effect Estimation. Kernel Debiased Plug-in Estimation: Simultaneous, Automated Debiasing without Influence Functions for Many Target Parameters. Adapt and Diffuse: Sample-Adaptive Reconstruction Via Latent Diffusion Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1