Sclerostin Transduced Bone Marrow Mesenchymal Stem Cells Promote Fracture Healing in Rats Through the Wnt/β-Catenin Signal Pathway.

Stem cells and development Pub Date : 2024-08-01 Epub Date: 2024-06-26 DOI:10.1089/scd.2024.0061
Lili Zhao, Shouyu Xiang, Cheng Tang, Wei Liu, Jianliang Gao, Xing Li, Yanming Cao
{"title":"Sclerostin Transduced Bone Marrow Mesenchymal Stem Cells Promote Fracture Healing in Rats Through the Wnt/β-Catenin Signal Pathway.","authors":"Lili Zhao, Shouyu Xiang, Cheng Tang, Wei Liu, Jianliang Gao, Xing Li, Yanming Cao","doi":"10.1089/scd.2024.0061","DOIUrl":null,"url":null,"abstract":"<p><p>The prognosis of fracture is directly related to several factors. Due to the limitations of existing treatment strategies, there are still many fractures with poor healing. Bone marrow mesenchymal stem cells (BMSCs) have the potential to differentiate into osteoblasts and chondrocytes. Therefore, BMSC transplantation is promised as an effective method for treating bone fractures. We aim to explore whether silently expressing sclerostin gene (SOST) can promote bone formation through the SOST/Wnt/β-catenin signal pathway. We isolated rat BMSCs and the target gene (SOST shRNA) was transduced into them for osteogenic induction. The results showed that SOST significantly inhibited the proliferation and osteogenic differentiation of BMSCs during osteogenic induction, whereas silently expressing SOST not only increased the number of surviving BMSCs but also promoted the expression of osteogenesis-related proteins RUNX2, osteoprotegerin, Collagen I (COL-I), and bone morphogenetic protein-2 during osteogenic induction. The results of imaging examination in rats show that downregulating the expression of SOST can promote the formation of bony callus and the transformation of cartilage tissue into normal bone tissue, and then accelerate the healing of osteoporotic fracture. In addition, we also found that SOST silencing can activate the Wnt/β-catenin pathway to achieve these effects. In conclusion, SOST silencing can promote the proliferation and osteogenic differentiation of BMSCs in situ, and therefore may enhance the therapeutic efficiency of BMSC transplantation in OPF.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":"438-447"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/scd.2024.0061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The prognosis of fracture is directly related to several factors. Due to the limitations of existing treatment strategies, there are still many fractures with poor healing. Bone marrow mesenchymal stem cells (BMSCs) have the potential to differentiate into osteoblasts and chondrocytes. Therefore, BMSC transplantation is promised as an effective method for treating bone fractures. We aim to explore whether silently expressing sclerostin gene (SOST) can promote bone formation through the SOST/Wnt/β-catenin signal pathway. We isolated rat BMSCs and the target gene (SOST shRNA) was transduced into them for osteogenic induction. The results showed that SOST significantly inhibited the proliferation and osteogenic differentiation of BMSCs during osteogenic induction, whereas silently expressing SOST not only increased the number of surviving BMSCs but also promoted the expression of osteogenesis-related proteins RUNX2, osteoprotegerin, Collagen I (COL-I), and bone morphogenetic protein-2 during osteogenic induction. The results of imaging examination in rats show that downregulating the expression of SOST can promote the formation of bony callus and the transformation of cartilage tissue into normal bone tissue, and then accelerate the healing of osteoporotic fracture. In addition, we also found that SOST silencing can activate the Wnt/β-catenin pathway to achieve these effects. In conclusion, SOST silencing can promote the proliferation and osteogenic differentiation of BMSCs in situ, and therefore may enhance the therapeutic efficiency of BMSC transplantation in OPF.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 Wnt/β-catenin 信号通路,硬骨素转导骨髓间充质干细胞促进大鼠骨折愈合。
骨折的预后与多种因素直接相关。由于现有治疗策略的局限性,仍有许多骨折愈合不良。骨髓间充质干细胞(BMSCs)具有分化成成骨细胞和软骨细胞的潜能。我们分离了大鼠骨髓间充质干细胞,并将目的基因(SOST shRNA)转入骨髓间充质干细胞进行成骨诱导。结果表明,硬骨蛋白在成骨诱导过程中明显抑制了BMSCs的增殖和成骨分化,而沉默表达SOST不仅增加了BMSCs的存活数量,而且在成骨诱导过程中促进了成骨相关蛋白RUNX2、OPG、COL-Ⅰ和BMP-2的表达。大鼠影像学检查结果表明,下调 SOST 的表达可促进骨性胼胝体的形成和软骨组织向正常骨组织的转化,进而加速骨质疏松性骨折(OPF)的愈合。总之,沉默 SOST 可促进 BMSCs 的原位增殖和成骨分化,从而提高 BMSC 移植对 OPF 的治疗效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
isopropanol
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Potential of Stem Cells in Modulating Gut Microbiota and Managing Hypertension. Epithelial-Mesenchymal Transition Functions as a Driver for the Direct Conversion of Somatic Cells. PEGylated Granulocyte Colony-Stimulating Factor and Plerixafor Enhance Autologous Stem and Progenitor Cell Mobilization and Transplantation in Pediatric Patients. Developing a Serum-Free and Cytokine-Optimizing Induction Medium to Increase the Production of CD14+CD16+ and CD14+CD16- Monocytes from Human CD133+ Hematopoietic Stem and Progenitor Cells. Wharton's Jelly Mesenchymal Stem Cells: Shaping the Future of Osteoarthritis Therapy with Advancements in Chitosan-Hyaluronic Acid Scaffolds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1