3D bioprinting of dense cellular structures within hydrogels with spatially controlled heterogeneity.

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL Biofabrication Pub Date : 2024-06-11 DOI:10.1088/1758-5090/ad52f1
Alperen Abaci, Murat Guvendiren
{"title":"3D bioprinting of dense cellular structures within hydrogels with spatially controlled heterogeneity.","authors":"Alperen Abaci, Murat Guvendiren","doi":"10.1088/1758-5090/ad52f1","DOIUrl":null,"url":null,"abstract":"<p><p>Embedded bioprinting is an emerging technology for precise deposition of cell-laden or cell-only bioinks to construct tissue like structures. Bioink is extruded or transferred into a yield stress hydrogel or a microgel support bath allowing print needle motion during printing and providing temporal support for the printed construct. Although this technology has enabled creation of complex tissue structures, it remains a challenge to develop a support bath with user-defined extracellular mimetic cues and their spatial and temporal control. This is crucial to mimic the dynamic nature of the native tissue to better regenerate tissues and organs. To address this, we present a bioprinting approach involving printing of a photocurable viscous support layer and bioprinting of a cell-only or cell-laden bioink within this viscous layer followed by brief exposure to light to partially crosslink the support layer. This approach does not require shear thinning behavior and is suitable for a wide range of photocurable hydrogels to be used as a support. It enables multi-material printing to spatially control support hydrogel heterogeneity including temporal delivery of bioactive cues (e.g. growth factors), and precise patterning of dense multi-cellular structures within these hydrogel supports. Here, dense stem cell aggregates are printed within methacrylated hyaluronic acid-based hydrogels with patterned heterogeneity to spatially modulate human mesenchymal stem cell osteogenesis. This study has significant impactions on creating tissue interfaces (e.g. osteochondral tissue) in which spatial control of extracellular matrix properties for patterned stem cell differentiation is crucial.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ad52f1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Embedded bioprinting is an emerging technology for precise deposition of cell-laden or cell-only bioinks to construct tissue like structures. Bioink is extruded or transferred into a yield stress hydrogel or a microgel support bath allowing print needle motion during printing and providing temporal support for the printed construct. Although this technology has enabled creation of complex tissue structures, it remains a challenge to develop a support bath with user-defined extracellular mimetic cues and their spatial and temporal control. This is crucial to mimic the dynamic nature of the native tissue to better regenerate tissues and organs. To address this, we present a bioprinting approach involving printing of a photocurable viscous support layer and bioprinting of a cell-only or cell-laden bioink within this viscous layer followed by brief exposure to light to partially crosslink the support layer. This approach does not require shear thinning behavior and is suitable for a wide range of photocurable hydrogels to be used as a support. It enables multi-material printing to spatially control support hydrogel heterogeneity including temporal delivery of bioactive cues (e.g. growth factors), and precise patterning of dense multi-cellular structures within these hydrogel supports. Here, dense stem cell aggregates are printed within methacrylated hyaluronic acid-based hydrogels with patterned heterogeneity to spatially modulate human mesenchymal stem cell osteogenesis. This study has significant impactions on creating tissue interfaces (e.g. osteochondral tissue) in which spatial control of extracellular matrix properties for patterned stem cell differentiation is crucial.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在具有空间异质性控制的水凝胶中进行致密细胞结构的三维生物打印。
嵌入式生物打印是一种新兴技术,用于精确沉积含有细胞或只有细胞的生物墨水,以构建类似组织的结构。生物墨水被挤出或转移到屈服应力水凝胶或微凝胶支撑浴中,从而允许打印针在打印过程中移动,并为打印结构提供时间支持。虽然这项技术能够创建复杂的组织结构,但开发具有用户定义的细胞外模拟线索及其空间和时间控制的支撑浴仍是一项挑战。这对于模拟原生组织的动态性质以更好地再生组织和器官至关重要。为了解决这个问题,我们提出了一种生物打印方法,包括打印光固化粘性支撑层,以及在该粘性层中打印纯细胞或含有细胞的生物墨水,然后短暂暴露在光下使支撑层部分交联。这种方法不需要剪切稀化行为,适用于用作支撑层的各种光固化水凝胶。它使多材料打印技术能够在空间上控制支撑水凝胶的异质性,包括生物活性线索(如生长因子)的时间传递,以及在这些水凝胶支撑层内精确绘制致密多细胞结构的图案。在这里,致密的干细胞聚集体被印制在具有异质性图案的甲基丙烯酸透明质酸基水凝胶中,以在空间上调节人类间充质干细胞的成骨作用。这项研究对创建组织界面(如骨软骨组织)具有重要影响,在这种界面中,ECM特性的空间控制对干细胞的模式化分化至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
期刊最新文献
CMC/Gel/GO 3D-printed cardiac patches: GO and CMC improve flexibility and promote H9C2 cell proliferation, while EDC/NHS enhances stability. Hybrid 3D bioprinting for advanced tissue-engineered trachea: merging fused deposition modeling (FDM) and top-down digital light processing (DLP). Automated production of nerve repair constructs containing endothelial cell tube-like structures. Fabrication of endothelialized capillary-like microchannel networks using sacrificial thermoresponsive microfibers. Nano-biofertilizers: utilizing nanopolymers as coating matrix - a comprehensive review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1