{"title":"Identification of Root Canal Morphology in Fused-rooted Mandibular Second Molars From X-ray Images Based on Deep Learning","authors":"","doi":"10.1016/j.joen.2024.05.014","DOIUrl":null,"url":null,"abstract":"<div><p><strong>Introduction:</strong> Understanding the intricate anatomical morphology of fused-rooted mandibular second molars (MSMs) is essential for root canal treatment. The present study utilized a deep learning approach to identify the three-dimensional root canal morphology of MSMs from two-dimensional X-ray images.</p></div><div><h3>Methods</h3><p>A total of 271 fused-rooted MSMs were included in the study. Micro-computed tomography reconstruction images and two-dimensional X-ray projection images were obtained. The ground truth of three-dimensional root canal morphology was determined through micro-computed tomography images, which were classified into merging, symmetrical, and asymmetrical types. To amplify the X-ray image dataset, traditional augmentation techniques from the python package Augmentor and a multiangle projection method were employed. Identification of root canal morphology was conducted using the pretrained VGG19, ResNet18, ResNet50, and EfficientNet-b5 on X-ray images. The classification results from convolutional neural networks (CNNs) were then compared with those performed by endodontic residents.</p></div><div><h3>Results</h3><p>The multiangle projection augmentation method outperformed the traditional approach in all CNNs except for EfficientNet-b5. ResNet18 combined with the multiangle projection method outperformed all other combinations, with an overall accuracy of 79.25%. In specific classifications, accuracies of 81.13%, 86.79%, and 90.57% were achieved for merging, symmetrical, and asymmetrical types, respectively. Notably, CNNs surpassed endodontic residents in classification performance; the average accuracy for endodontic residents was only 60.38% (<em>P</em> < .05).</p></div><div><h3>Conclusions</h3><p>CNNs were more effective than endodontic residents in identifying the three-dimensional root canal morphology of MSMs. The result indicates that CNNs possess the capacity to employ two-dimensional images effectively in aiding three-dimensional diagnoses.</p></div>","PeriodicalId":15703,"journal":{"name":"Journal of endodontics","volume":"50 9","pages":"Pages 1289-1297.e1"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of endodontics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0099239924003388","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Understanding the intricate anatomical morphology of fused-rooted mandibular second molars (MSMs) is essential for root canal treatment. The present study utilized a deep learning approach to identify the three-dimensional root canal morphology of MSMs from two-dimensional X-ray images.
Methods
A total of 271 fused-rooted MSMs were included in the study. Micro-computed tomography reconstruction images and two-dimensional X-ray projection images were obtained. The ground truth of three-dimensional root canal morphology was determined through micro-computed tomography images, which were classified into merging, symmetrical, and asymmetrical types. To amplify the X-ray image dataset, traditional augmentation techniques from the python package Augmentor and a multiangle projection method were employed. Identification of root canal morphology was conducted using the pretrained VGG19, ResNet18, ResNet50, and EfficientNet-b5 on X-ray images. The classification results from convolutional neural networks (CNNs) were then compared with those performed by endodontic residents.
Results
The multiangle projection augmentation method outperformed the traditional approach in all CNNs except for EfficientNet-b5. ResNet18 combined with the multiangle projection method outperformed all other combinations, with an overall accuracy of 79.25%. In specific classifications, accuracies of 81.13%, 86.79%, and 90.57% were achieved for merging, symmetrical, and asymmetrical types, respectively. Notably, CNNs surpassed endodontic residents in classification performance; the average accuracy for endodontic residents was only 60.38% (P < .05).
Conclusions
CNNs were more effective than endodontic residents in identifying the three-dimensional root canal morphology of MSMs. The result indicates that CNNs possess the capacity to employ two-dimensional images effectively in aiding three-dimensional diagnoses.
期刊介绍:
The Journal of Endodontics, the official journal of the American Association of Endodontists, publishes scientific articles, case reports and comparison studies evaluating materials and methods of pulp conservation and endodontic treatment. Endodontists and general dentists can learn about new concepts in root canal treatment and the latest advances in techniques and instrumentation in the one journal that helps them keep pace with rapid changes in this field.