{"title":"Development of environmental DNA metabarcoding primers for marine mollusks and comparison with published primers.","authors":"Xiaojing Shi, Yihui Jiang, Ling Cao, Cong Zeng","doi":"10.1186/s12862-024-02265-8","DOIUrl":null,"url":null,"abstract":"<p><p>Monitoring mollusk biodiversity is a great challenge due to their large diversity and broad distribution. Environmental DNA (eDNA) technology is increasingly applied for biodiversity monitoring, but relevant studies on marine mollusks are still limited. Although previous studies have developed several pairs of primers for mollusk eDNA analyses, most of them targeted only a small group of mollusks. In this study, seven primers were designed for the mollusk community and validated and compared with eight pairs of published primers to select the best candidates. After in silico test, MollCOI154 and MollCOI255 primers showed non-specific amplification, and same results were also obtained in published primers (COI204, Sepi, and veneroida). Moll12S100, Moll12S195 and Moll16S primers failed to amplify across all genomic DNA from selected mollusk. Except Moll16S, all developed and two published (unionoida and veneroida) primers were successfully amplified on four eDNA samples from Yangtze River estuary. After annotation of the amplified sequences, MollCOI253 showed higher annotation of the amplification results than the other primers. In conclusion, MollCOI253 had better performance in terms of amplification success and specificity, and can provide technical support for eDNA-based research, which will be beneficial for molluscan biodiversity investigation and conservation.</p>","PeriodicalId":93910,"journal":{"name":"BMC ecology and evolution","volume":"24 1","pages":"73"},"PeriodicalIF":2.3000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140855/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC ecology and evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12862-024-02265-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Monitoring mollusk biodiversity is a great challenge due to their large diversity and broad distribution. Environmental DNA (eDNA) technology is increasingly applied for biodiversity monitoring, but relevant studies on marine mollusks are still limited. Although previous studies have developed several pairs of primers for mollusk eDNA analyses, most of them targeted only a small group of mollusks. In this study, seven primers were designed for the mollusk community and validated and compared with eight pairs of published primers to select the best candidates. After in silico test, MollCOI154 and MollCOI255 primers showed non-specific amplification, and same results were also obtained in published primers (COI204, Sepi, and veneroida). Moll12S100, Moll12S195 and Moll16S primers failed to amplify across all genomic DNA from selected mollusk. Except Moll16S, all developed and two published (unionoida and veneroida) primers were successfully amplified on four eDNA samples from Yangtze River estuary. After annotation of the amplified sequences, MollCOI253 showed higher annotation of the amplification results than the other primers. In conclusion, MollCOI253 had better performance in terms of amplification success and specificity, and can provide technical support for eDNA-based research, which will be beneficial for molluscan biodiversity investigation and conservation.