{"title":"Beyond the Edge: An Advanced Exploration of Reinforcement Learning for Mobile Edge Computing, Its Applications, and Future Research Trajectories","authors":"Ning Yang;Shuo Chen;Haijun Zhang;Randall Berry","doi":"10.1109/COMST.2024.3405075","DOIUrl":null,"url":null,"abstract":"Mobile Edge Computing (MEC) broadens the scope of computation and storage beyond the central network, incorporating edge nodes close to end devices. This expansion facilitates the implementation of large-scale “connected things” within edge networks. The advent of applications necessitating real-time, high-quality service presents several challenges, such as low latency, high data rate, reliability, efficiency, and security, all of which demand resolution. The incorporation of reinforcement learning (RL) methodologies within MEC networks promotes a deeper understanding of mobile user behaviors and network dynamics, thereby optimizing resource use in computing and communication processes. This paper offers an exhaustive survey of RL applications in MEC networks, initially presenting an overview of RL from its fundamental principles to the latest advanced frameworks. Furthermore, it outlines various RL strategies employed in offloading, caching, and communication within MEC networks. Finally, it explores open issues linked with software and hardware platforms, representation, RL robustness, safe RL, large-scale scheduling, generalization, security, and privacy. The paper proposes specific RL techniques to mitigate these issues and provides insights into their practical applications.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"27 1","pages":"546-594"},"PeriodicalIF":34.4000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Surveys and Tutorials","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10545344/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Mobile Edge Computing (MEC) broadens the scope of computation and storage beyond the central network, incorporating edge nodes close to end devices. This expansion facilitates the implementation of large-scale “connected things” within edge networks. The advent of applications necessitating real-time, high-quality service presents several challenges, such as low latency, high data rate, reliability, efficiency, and security, all of which demand resolution. The incorporation of reinforcement learning (RL) methodologies within MEC networks promotes a deeper understanding of mobile user behaviors and network dynamics, thereby optimizing resource use in computing and communication processes. This paper offers an exhaustive survey of RL applications in MEC networks, initially presenting an overview of RL from its fundamental principles to the latest advanced frameworks. Furthermore, it outlines various RL strategies employed in offloading, caching, and communication within MEC networks. Finally, it explores open issues linked with software and hardware platforms, representation, RL robustness, safe RL, large-scale scheduling, generalization, security, and privacy. The paper proposes specific RL techniques to mitigate these issues and provides insights into their practical applications.
期刊介绍:
IEEE Communications Surveys & Tutorials is an online journal published by the IEEE Communications Society for tutorials and surveys covering all aspects of the communications field. Telecommunications technology is progressing at a rapid pace, and the IEEE Communications Society is committed to providing researchers and other professionals the information and tools to stay abreast. IEEE Communications Surveys and Tutorials focuses on integrating and adding understanding to the existing literature on communications, putting results in context. Whether searching for in-depth information about a familiar area or an introduction into a new area, IEEE Communications Surveys & Tutorials aims to be the premier source of peer-reviewed, comprehensive tutorials and surveys, and pointers to further sources. IEEE Communications Surveys & Tutorials publishes only articles exclusively written for IEEE Communications Surveys & Tutorials and go through a rigorous review process before their publication in the quarterly issues.
A tutorial article in the IEEE Communications Surveys & Tutorials should be designed to help the reader to become familiar with and learn something specific about a chosen topic. In contrast, the term survey, as applied here, is defined to mean a survey of the literature. A survey article in IEEE Communications Surveys & Tutorials should provide a comprehensive review of developments in a selected area, covering its development from its inception to its current state and beyond, and illustrating its development through liberal citations from the literature. Both tutorials and surveys should be tutorial in nature and should be written in a style comprehensible to readers outside the specialty of the article.