Tiffany A Meier, Mohammad S Refahi, Gavin Hearne, Daniele S Restifo, Ricardo Munoz-Acuna, Gail L Rosen, Stephen Woloszynek
{"title":"The Role and Applications of Artificial Intelligence in the Treatment of Chronic Pain.","authors":"Tiffany A Meier, Mohammad S Refahi, Gavin Hearne, Daniele S Restifo, Ricardo Munoz-Acuna, Gail L Rosen, Stephen Woloszynek","doi":"10.1007/s11916-024-01264-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>This review aims to explore the interface between artificial intelligence (AI) and chronic pain, seeking to identify areas of focus for enhancing current treatments and yielding novel therapies.</p><p><strong>Recent findings: </strong>In the United States, the prevalence of chronic pain is estimated to be upwards of 40%. Its impact extends to increased healthcare costs, reduced economic productivity, and strain on healthcare resources. Addressing this condition is particularly challenging due to its complexity and the significant variability in how patients respond to treatment. Current options often struggle to provide long-term relief, with their benefits rarely outweighing the risks, such as dependency or other side effects. Currently, AI has impacted four key areas of chronic pain treatment and research: (1) predicting outcomes based on clinical information; (2) extracting features from text, specifically clinical notes; (3) modeling 'omic data to identify meaningful patient subgroups with potential for personalized treatments and improved understanding of disease processes; and (4) disentangling complex neuronal signals responsible for pain, which current therapies attempt to modulate. As AI advances, leveraging state-of-the-art architectures will be essential for improving chronic pain treatment. Current efforts aim to extract meaningful representations from complex data, paving the way for personalized medicine. The identification of unique patient subgroups should reveal targets for tailored chronic pain treatments. Moreover, enhancing current treatment approaches is achievable by gaining a more profound understanding of patient physiology and responses. This can be realized by leveraging AI on the increasing volume of data linked to chronic pain.</p>","PeriodicalId":50602,"journal":{"name":"Current Pain and Headache Reports","volume":" ","pages":"769-784"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Pain and Headache Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11916-024-01264-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose of review: This review aims to explore the interface between artificial intelligence (AI) and chronic pain, seeking to identify areas of focus for enhancing current treatments and yielding novel therapies.
Recent findings: In the United States, the prevalence of chronic pain is estimated to be upwards of 40%. Its impact extends to increased healthcare costs, reduced economic productivity, and strain on healthcare resources. Addressing this condition is particularly challenging due to its complexity and the significant variability in how patients respond to treatment. Current options often struggle to provide long-term relief, with their benefits rarely outweighing the risks, such as dependency or other side effects. Currently, AI has impacted four key areas of chronic pain treatment and research: (1) predicting outcomes based on clinical information; (2) extracting features from text, specifically clinical notes; (3) modeling 'omic data to identify meaningful patient subgroups with potential for personalized treatments and improved understanding of disease processes; and (4) disentangling complex neuronal signals responsible for pain, which current therapies attempt to modulate. As AI advances, leveraging state-of-the-art architectures will be essential for improving chronic pain treatment. Current efforts aim to extract meaningful representations from complex data, paving the way for personalized medicine. The identification of unique patient subgroups should reveal targets for tailored chronic pain treatments. Moreover, enhancing current treatment approaches is achievable by gaining a more profound understanding of patient physiology and responses. This can be realized by leveraging AI on the increasing volume of data linked to chronic pain.
期刊介绍:
This journal aims to review the most important, recently published clinical findings regarding the diagnosis, treatment, and management of pain and headache. By providing clear, insightful, balanced contributions by international experts, the journal intends to serve all those involved in the care and prevention of pain and headache.
We accomplish this aim by appointing international authorities to serve as Section Editors in key subject areas, such as anesthetic techniques in pain management, cluster headache, neuropathic pain, and migraine. Section Editors, in turn, select topics for which leading experts contribute comprehensive review articles that emphasize new developments and recently published papers of major importance, highlighted by annotated reference lists. An international Editorial Board reviews the annual table of contents, suggests articles of special interest to their country/region, and ensures that topics are current and include emerging research. Commentaries from well-known figures in the field are also provided.