Optimal Access Point Centric Clustering for Cell-Free Massive MIMO Using Gaussian Mixture Model Clustering

Pialy Biswas;Ranjan K. Mallik;Khaled B. Letaief
{"title":"Optimal Access Point Centric Clustering for Cell-Free Massive MIMO Using Gaussian Mixture Model Clustering","authors":"Pialy Biswas;Ranjan K. Mallik;Khaled B. Letaief","doi":"10.1109/TMLCN.2024.3403789","DOIUrl":null,"url":null,"abstract":"This paper proposes a Gaussian mixture model (GMM) based access point (AP) clustering technique in cell-free massive MIMO (CFMM) communication systems. The APs are first clustered on the basis of large-scale fading coefficients, and the users are assigned to each cluster depending on the channel gain. As the number of clusters increases, there is a degradation in the overall data rate of the system, causing a trade-off between the cluster number and average rate per user. To address this problem, we present an optimization problem that optimizes both the upper bound on the average downlink rate per user and the number of clusters. The optimal number of clusters is intuitively determined by solving the optimization problem, and then grouping the APs and users. As a result, the computation expense is much lower than the current techniques, since the existing methods require evaluations of the network performance in multiple iterations to find the optimal number of clusters. In addition, we analyze the performance of both balanced and unbalanced clustering. Numerical results will indicate that the unbalanced clustering yields a superior rate per user while maintaining a lower level of complexity compared to the balanced one. Furthermore, we investigate the statistical analysis of the spectral efficiency (SE) per user in the clustered CFMM. The findings reveal that the SE per user can be approximated by the logistic distribution.","PeriodicalId":100641,"journal":{"name":"IEEE Transactions on Machine Learning in Communications and Networking","volume":"2 ","pages":"675-687"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10535986","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Machine Learning in Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10535986/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a Gaussian mixture model (GMM) based access point (AP) clustering technique in cell-free massive MIMO (CFMM) communication systems. The APs are first clustered on the basis of large-scale fading coefficients, and the users are assigned to each cluster depending on the channel gain. As the number of clusters increases, there is a degradation in the overall data rate of the system, causing a trade-off between the cluster number and average rate per user. To address this problem, we present an optimization problem that optimizes both the upper bound on the average downlink rate per user and the number of clusters. The optimal number of clusters is intuitively determined by solving the optimization problem, and then grouping the APs and users. As a result, the computation expense is much lower than the current techniques, since the existing methods require evaluations of the network performance in multiple iterations to find the optimal number of clusters. In addition, we analyze the performance of both balanced and unbalanced clustering. Numerical results will indicate that the unbalanced clustering yields a superior rate per user while maintaining a lower level of complexity compared to the balanced one. Furthermore, we investigate the statistical analysis of the spectral efficiency (SE) per user in the clustered CFMM. The findings reveal that the SE per user can be approximated by the logistic distribution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用高斯混杂模型聚类实现无小区大规模多输入多输出(MIMO)的最佳接入点中心聚类
本文在无小区大规模多输入多输出(CFMM)通信系统中提出了一种基于高斯混合模型(GMM)的接入点(AP)聚类技术。首先根据大规模衰减系数对接入点进行聚类,然后根据信道增益将用户分配到每个聚类中。随着簇数的增加,系统的整体数据传输速率会下降,从而导致簇数和每个用户平均速率之间的权衡。为了解决这个问题,我们提出了一个优化问题,既能优化每个用户的平均下行链路速率上限,又能优化簇的数量。通过求解优化问题,然后对接入点和用户进行分组,就能直观地确定最佳簇数。因此,与现有技术相比,计算费用要低得多,因为现有方法需要通过多次迭代来评估网络性能,从而找到最佳簇数。此外,我们还分析了平衡聚类和非平衡聚类的性能。数值结果表明,与平衡聚类法相比,非平衡聚类法在保持较低复杂度的同时,还能获得更高的单位用户速率。此外,我们还对聚类 CFMM 中每个用户的频谱效率(SE)进行了统计分析。研究结果表明,每个用户的频谱效率可以用逻辑分布来近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conditional Denoising Diffusion Probabilistic Models for Data Reconstruction Enhancement in Wireless Communications Multi-Agent Reinforcement Learning With Action Masking for UAV-Enabled Mobile Communications Online Learning for Intelligent Thermal Management of Interference-Coupled and Passively Cooled Base Stations Robust and Lightweight Modeling of IoT Network Behaviors From Raw Traffic Packets Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1