Towards Semi-Supervised Classification of Abnormal Spectrum Signals Based on Deep Learning

IF 1.6 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Chinese Journal of Electronics Pub Date : 2024-03-31 DOI:10.23919/cje.2022.00.395
Tao Jiang;Wanqing Chen;Hangping Zhou;Jinyang He;Peihan Qi
{"title":"Towards Semi-Supervised Classification of Abnormal Spectrum Signals Based on Deep Learning","authors":"Tao Jiang;Wanqing Chen;Hangping Zhou;Jinyang He;Peihan Qi","doi":"10.23919/cje.2022.00.395","DOIUrl":null,"url":null,"abstract":"In order to cope with the heavy labor cost challenge of the manual abnormal spectrum classification and improve the effectiveness of existing machine learning schemes for spectral datasets with interference-to-signal ratios, we proposes a semi-supervised classification of abnormal spectrum signals (SSC-ASS), aimed at addressing some of the challenges in abnormal spectrum signal (ASS) classification tasks. A significant advantage of SSC-ASS is that it does not require manual labeling of every abnormal data, but instead achieves high-precision classification of ASSs using only a small number of labeled data. Furthermore, the method can to some extent avoid the introduction of erroneous information resulting from the complex and variable nature of abnormal signals, thereby improving classification accuracy. Specifically, SSC-ASS uses a memory AutoEncoder module to efficiently extract features from abnormal spectrum signals by learning from the reconstruction error. Additionally, SSC-ASS combines convolutional neural network and the \n<tex>$K$</tex>\n-means using a DeepCluster framework to fully utilize the unlabeled data. Furthermore, SSC-ASS also utilizes pre-training, category mean memory module and replaces pseudo-labels to further improve the classification accuracy of ASSs. And we verify the classification effectiveness of SSC-ASS on synthetic spectrum datasets and real on-air spectrum dataset.","PeriodicalId":50701,"journal":{"name":"Chinese Journal of Electronics","volume":"33 3","pages":"721-731"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10543217","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10543217/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In order to cope with the heavy labor cost challenge of the manual abnormal spectrum classification and improve the effectiveness of existing machine learning schemes for spectral datasets with interference-to-signal ratios, we proposes a semi-supervised classification of abnormal spectrum signals (SSC-ASS), aimed at addressing some of the challenges in abnormal spectrum signal (ASS) classification tasks. A significant advantage of SSC-ASS is that it does not require manual labeling of every abnormal data, but instead achieves high-precision classification of ASSs using only a small number of labeled data. Furthermore, the method can to some extent avoid the introduction of erroneous information resulting from the complex and variable nature of abnormal signals, thereby improving classification accuracy. Specifically, SSC-ASS uses a memory AutoEncoder module to efficiently extract features from abnormal spectrum signals by learning from the reconstruction error. Additionally, SSC-ASS combines convolutional neural network and the $K$ -means using a DeepCluster framework to fully utilize the unlabeled data. Furthermore, SSC-ASS also utilizes pre-training, category mean memory module and replaces pseudo-labels to further improve the classification accuracy of ASSs. And we verify the classification effectiveness of SSC-ASS on synthetic spectrum datasets and real on-air spectrum dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习实现异常频谱信号的半监督分类
为了应对人工异常频谱分类所带来的巨大人力成本挑战,并提高现有机器学习方案在具有干扰信号比的频谱数据集上的有效性,我们提出了异常频谱信号半监督分类(SSC-ASS),旨在解决异常频谱信号(ASS)分类任务中的一些难题。SSC-ASS 的一个显著优势是,它不需要对每个异常数据进行人工标注,而只需使用少量标注数据即可实现高精度的 ASS 分类。此外,该方法还能在一定程度上避免因异常信号复杂多变而引入错误信息,从而提高分类精度。具体来说,SSC-ASS 使用内存自动编码器模块,通过学习重构误差,有效地提取异常频谱信号的特征。此外,SSC-ASS 利用 DeepCluster 框架将卷积神经网络和 $K$-means 结合起来,充分利用了未标记数据。此外,SSC-ASS 还利用预训练、类别均值记忆模块和替换伪标签等方法,进一步提高了 ASS 的分类精度。我们还在合成频谱数据集和真实空中频谱数据集上验证了 SSC-ASS 的分类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Journal of Electronics
Chinese Journal of Electronics 工程技术-工程:电子与电气
CiteScore
3.70
自引率
16.70%
发文量
342
审稿时长
12.0 months
期刊介绍: CJE focuses on the emerging fields of electronics, publishing innovative and transformative research papers. Most of the papers published in CJE are from universities and research institutes, presenting their innovative research results. Both theoretical and practical contributions are encouraged, and original research papers reporting novel solutions to the hot topics in electronics are strongly recommended.
期刊最新文献
Front Cover Contents Virtual Coupling Trains Based on Multi-Agent System Under Communication Delay Model Checking Computation Tree Logic Over Multi-Valued Decision Processes and Its Reduction Techniques Subspace Clustering via Block-Diagonal Decomposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1