Extracting Integrated Features of Electronic Medical Records Big Data for Mortality and Phenotype Prediction

IF 1.6 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Chinese Journal of Electronics Pub Date : 2024-03-31 DOI:10.23919/cje.2023.00.181
Fei Li;Yiqiang Chen;Yang Gu;Yaowei Wang
{"title":"Extracting Integrated Features of Electronic Medical Records Big Data for Mortality and Phenotype Prediction","authors":"Fei Li;Yiqiang Chen;Yang Gu;Yaowei Wang","doi":"10.23919/cje.2023.00.181","DOIUrl":null,"url":null,"abstract":"The key to synthesizing the features of electronic medical records (EMR) big data and using them for specific medical purposes, such as mortality and phenotype prediction, is to integrate the individual medical event and the overall multivariate time series feature extraction automatically, as well as to alleviate data imbalance problems. This paper provides a general feature extraction method to reduce manual intervention and automatically process large-scale data. The processing uses two variational auto-encoders (VAEs) to automatically extract individual and global features. It avoids the well-known posterior collapse problem of Transformer VAE through a uniquely designed “proportional and stabilizing” mechanism and forms a unique means to alleviate the data imbalance problem. We conducted experiments using ICU-STAY patients' data from the MIMIC-III database and compared them with the mainstream EMR time series processing methods. The results show that the method extracts visible and comprehensive features, alleviates data imbalance problems and improves the accuracy in specific predicting tasks.","PeriodicalId":50701,"journal":{"name":"Chinese Journal of Electronics","volume":"33 3","pages":"776-792"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10543236","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10543236/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The key to synthesizing the features of electronic medical records (EMR) big data and using them for specific medical purposes, such as mortality and phenotype prediction, is to integrate the individual medical event and the overall multivariate time series feature extraction automatically, as well as to alleviate data imbalance problems. This paper provides a general feature extraction method to reduce manual intervention and automatically process large-scale data. The processing uses two variational auto-encoders (VAEs) to automatically extract individual and global features. It avoids the well-known posterior collapse problem of Transformer VAE through a uniquely designed “proportional and stabilizing” mechanism and forms a unique means to alleviate the data imbalance problem. We conducted experiments using ICU-STAY patients' data from the MIMIC-III database and compared them with the mainstream EMR time series processing methods. The results show that the method extracts visible and comprehensive features, alleviates data imbalance problems and improves the accuracy in specific predicting tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从电子病历大数据中提取综合特征,用于死亡率和表型预测
综合电子病历(EMR)大数据的特征并将其用于死亡率和表型预测等特定医疗目的,关键在于自动整合单个医疗事件和整体多变量时间序列特征提取,以及缓解数据不平衡问题。本文提供了一种通用特征提取方法,以减少人工干预并自动处理大规模数据。处理过程使用两个变异自动编码器(VAE)来自动提取单个和整体特征。它通过独特设计的 "比例和稳定 "机制,避免了变分自动编码器(VAE)众所周知的后验崩溃问题,并形成了缓解数据不平衡问题的独特手段。我们使用 MIMIC-III 数据库中的 ICU-STAY 患者数据进行了实验,并与主流的 EMR 时间序列处理方法进行了比较。结果表明,该方法提取了可见的综合特征,缓解了数据不平衡问题,提高了特定预测任务的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Journal of Electronics
Chinese Journal of Electronics 工程技术-工程:电子与电气
CiteScore
3.70
自引率
16.70%
发文量
342
审稿时长
12.0 months
期刊介绍: CJE focuses on the emerging fields of electronics, publishing innovative and transformative research papers. Most of the papers published in CJE are from universities and research institutes, presenting their innovative research results. Both theoretical and practical contributions are encouraged, and original research papers reporting novel solutions to the hot topics in electronics are strongly recommended.
期刊最新文献
Front Cover Contents Virtual Coupling Trains Based on Multi-Agent System Under Communication Delay Model Checking Computation Tree Logic Over Multi-Valued Decision Processes and Its Reduction Techniques Subspace Clustering via Block-Diagonal Decomposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1