Decay of the radius of spatial analyticity for the modified KdV equation and the nonlinear Schrödinger equation with third order dispersion

Renata O. Figueira, Mahendra Panthee
{"title":"Decay of the radius of spatial analyticity for the modified KdV equation and the nonlinear Schrödinger equation with third order dispersion","authors":"Renata O. Figueira, Mahendra Panthee","doi":"10.1007/s00030-024-00960-5","DOIUrl":null,"url":null,"abstract":"<p>We consider the initial value problems (IVPs) for the modified Korteweg–de Vries (mKdV) equation </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{l} \\partial _t u+ \\partial _x^3u+\\mu u^2\\partial _xu =0, \\quad x\\in \\mathbb {R},\\; t\\in \\mathbb {R}, \\\\ u(x,0) = u_0(x), \\end{array}\\right. \\end{aligned}$$</span><p>where <i>u</i> is a real valued function and <span>\\(\\mu =\\pm 1\\)</span>, and the cubic nonlinear Schrödinger equation with third order dispersion (tNLS equation in short) </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{l} \\partial _t v+i\\alpha \\partial _x^2v+\\beta \\partial _x^3v+i\\gamma |v|^2v = 0, \\quad x\\in \\mathbb {R},\\; t\\in \\mathbb {R}, \\\\ v(x,0) = v_0(x), \\end{array}\\right. \\end{aligned}$$</span><p>where <span>\\(\\alpha , \\beta \\)</span> and <span>\\(\\gamma \\)</span> are real constants and <i>v</i> is a complex valued function. In both problems, the initial data <span>\\(u_0\\)</span> and <span>\\(v_0\\)</span> are analytic on <span>\\(\\mathbb {R}\\)</span> and have uniform radius of analyticity <span>\\(\\sigma _0\\)</span> in the space variable. We prove that the both IVPs are locally well-posed for such data by establishing an analytic version of the trilinear estimates, and showed that the radius of spatial analyticity of the solution remains the same <span>\\(\\sigma _0\\)</span> till some lifespan <span>\\(0&lt;T_0\\le 1\\)</span>. We also consider the evolution of the radius of spatial analyticity <span>\\(\\sigma (t)\\)</span> when the local solution extends globally in time and prove that for any time <span>\\(T\\ge T_0\\)</span> it is bounded from below by <span>\\(c T^{-\\frac{4}{3}}\\)</span>, for the mKdV equation in the defocusing case (<span>\\(\\mu = -1\\)</span>) and by <span>\\(c T^{-(4+\\varepsilon )}\\)</span>, <span>\\(\\varepsilon &gt;0\\)</span>, for the tNLS equation. The result for the mKdV equation improves the one obtained in Bona et al. (Ann Inst Henri Poincaré 22:783–797, 2005) and, as far as we know, the result for the tNLS equation is the new one.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00960-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the initial value problems (IVPs) for the modified Korteweg–de Vries (mKdV) equation

$$\begin{aligned} \left\{ \begin{array}{l} \partial _t u+ \partial _x^3u+\mu u^2\partial _xu =0, \quad x\in \mathbb {R},\; t\in \mathbb {R}, \\ u(x,0) = u_0(x), \end{array}\right. \end{aligned}$$

where u is a real valued function and \(\mu =\pm 1\), and the cubic nonlinear Schrödinger equation with third order dispersion (tNLS equation in short)

$$\begin{aligned} \left\{ \begin{array}{l} \partial _t v+i\alpha \partial _x^2v+\beta \partial _x^3v+i\gamma |v|^2v = 0, \quad x\in \mathbb {R},\; t\in \mathbb {R}, \\ v(x,0) = v_0(x), \end{array}\right. \end{aligned}$$

where \(\alpha , \beta \) and \(\gamma \) are real constants and v is a complex valued function. In both problems, the initial data \(u_0\) and \(v_0\) are analytic on \(\mathbb {R}\) and have uniform radius of analyticity \(\sigma _0\) in the space variable. We prove that the both IVPs are locally well-posed for such data by establishing an analytic version of the trilinear estimates, and showed that the radius of spatial analyticity of the solution remains the same \(\sigma _0\) till some lifespan \(0<T_0\le 1\). We also consider the evolution of the radius of spatial analyticity \(\sigma (t)\) when the local solution extends globally in time and prove that for any time \(T\ge T_0\) it is bounded from below by \(c T^{-\frac{4}{3}}\), for the mKdV equation in the defocusing case (\(\mu = -1\)) and by \(c T^{-(4+\varepsilon )}\), \(\varepsilon >0\), for the tNLS equation. The result for the mKdV equation improves the one obtained in Bona et al. (Ann Inst Henri Poincaré 22:783–797, 2005) and, as far as we know, the result for the tNLS equation is the new one.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
修正 KdV 方程和三阶分散非线性薛定谔方程空间解析性半径的衰减
我们考虑修正的 Korteweg-de Vries(mKdV)方程的初值问题(IVPs) $$\begin{aligned}\left\{ \begin{array}{l}\partial _t u+partial _x^3u+mu u^2partial _xu =0, quad x in \mathbb {R},\; t in \mathbb {R}, \ u(x,0) = u_0(x), end{array}\right.\end{aligned}$$where u is a real valued function and \(\mu =\pm 1\), and the cubic nonlinear Schrödinger equation with third order dispersion (tNLS equation in short) $$\begin{aligned}.\left\{ \begin{array}{l}\partial _t v+i\alpha \partial _x^2v+i\beta \partial _x^3v+i\gamma |v|^2v = 0, \quad x\in \mathbb {R},\; t\in \mathbb {R}, \v(x,0) = v_0(x), \end{array}\right.\end{aligned}$ 其中 \(\alpha , \beta \) 和 \(\gamma \) 是实常数,v 是复值函数。在这两个问题中,初始数据 \(u_0\) 和 \(v_0\) 在 \(\mathbb {R}\) 上是解析的,并且在空间变量中具有均匀的解析半径 \(\sigma _0\) 。我们通过建立三线性估计的解析版本来证明这两个IVP对这样的数据都是局部良好求解的,并证明解的空间解析半径在某个生命期\(0<T_0\le 1\)之前保持不变\(\sigma _0\)。我们还考虑了当局部解在时间上全局扩展时空间解析性半径的演化,并证明对于任意时间\(T\ge T_0\),空间解析性半径从下往上受\(c T^{-\frac{4}{3}}\) 约束、(\(\mu=-1/)),对于失焦情况下的mKdV方程,由\(c T^{-(4+\varepsilon )}\), (\(\varepsilon >;0),用于 tNLS 方程。mKdV 方程的结果改进了博纳等人(Ann Inst Henri Poincaré 22:783-797, 2005)的结果,据我们所知,tNLS 方程的结果是新的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A note on averaging for the dispersion-managed NLS Global regularity of 2D generalized incompressible magnetohydrodynamic equations Classical and generalized solutions of an alarm-taxis model Sign-changing solution for an elliptic equation with critical growth at the boundary New critical point theorem and infinitely many normalized small-magnitude solutions of mass supercritical Schrödinger equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1