SLO-Aware GPU DVFS for Energy-Efficient LLM Inference Serving

IF 1.4 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Computer Architecture Letters Pub Date : 2024-03-28 DOI:10.1109/LCA.2024.3406038
Andreas Kosmas Kakolyris;Dimosthenis Masouros;Sotirios Xydis;Dimitrios Soudris
{"title":"SLO-Aware GPU DVFS for Energy-Efficient LLM Inference Serving","authors":"Andreas Kosmas Kakolyris;Dimosthenis Masouros;Sotirios Xydis;Dimitrios Soudris","doi":"10.1109/LCA.2024.3406038","DOIUrl":null,"url":null,"abstract":"The increasing popularity of LLM-based chatbots combined with their reliance on power-hungry GPU infrastructure forms a critical challenge for providers: minimizing energy consumption under Service-Level Objectives (SLOs) that ensure optimal user experience. Traditional energy optimization methods fall short for LLM inference due to their autoregressive architecture, which renders them incapable of meeting a predefined SLO without \n<italic>energy overprovisioning</i>\n. This autoregressive nature however, allows for iteration-level adjustments, enabling continuous fine-tuning of the system throughout the inference process. In this letter, we propose a solution based on iteration-level GPU Dynamic Voltage Frequency Scaling (DVFS), aiming to reduce the energy impact of LLM serving, an approach that has the potential for more than 22.8% and up to 45.5% energy gains when tested in real world situations under varying SLO constraints. Our approach works on top of existing LLM hosting services, requires minimal profiling and no intervention to the inference serving system.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"23 2","pages":"150-153"},"PeriodicalIF":1.4000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10540202/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing popularity of LLM-based chatbots combined with their reliance on power-hungry GPU infrastructure forms a critical challenge for providers: minimizing energy consumption under Service-Level Objectives (SLOs) that ensure optimal user experience. Traditional energy optimization methods fall short for LLM inference due to their autoregressive architecture, which renders them incapable of meeting a predefined SLO without energy overprovisioning . This autoregressive nature however, allows for iteration-level adjustments, enabling continuous fine-tuning of the system throughout the inference process. In this letter, we propose a solution based on iteration-level GPU Dynamic Voltage Frequency Scaling (DVFS), aiming to reduce the energy impact of LLM serving, an approach that has the potential for more than 22.8% and up to 45.5% energy gains when tested in real world situations under varying SLO constraints. Our approach works on top of existing LLM hosting services, requires minimal profiling and no intervention to the inference serving system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向高能效 LLM 推理服务的 SLO 感知 GPU DVFS
基于 LLM 的聊天机器人越来越受欢迎,再加上它们对耗电的 GPU 基础设施的依赖,给提供商带来了严峻的挑战:如何在确保最佳用户体验的服务级别目标(SLO)下最大限度地降低能耗。传统的能耗优化方法由于其自回归架构而无法满足预定义的 SLO,从而导致能耗超配,因此无法满足 LLM 推理的要求。不过,这种自回归特性允许进行迭代级调整,从而在整个推理过程中对系统进行持续微调。在这封信中,我们提出了一种基于迭代级 GPU 动态电压频率缩放(DVFS)的解决方案,旨在减少 LLM 服务对能源的影响,这种方法在不同 SLO 约束条件下的实际情况中进行测试时,有可能实现超过 22.8%、最多 45.5% 的能源增益。我们的方法可在现有 LLM 托管服务的基础上运行,只需最低限度的剖析,无需干预推理服务系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Computer Architecture Letters
IEEE Computer Architecture Letters COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.60
自引率
4.30%
发文量
29
期刊介绍: IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.
期刊最新文献
A Flexible Hybrid Interconnection Design for High-Performance and Energy-Efficient Chiplet-Based Systems Efficient Implementation of Knuth Yao Sampler on Reconfigurable Hardware SmartQuant: CXL-Based AI Model Store in Support of Runtime Configurable Weight Quantization Proactive Embedding on Cold Data for Deep Learning Recommendation Model Training Octopus: A Cycle-Accurate Cache System Simulator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1