Andreas Kosmas Kakolyris;Dimosthenis Masouros;Sotirios Xydis;Dimitrios Soudris
{"title":"SLO-Aware GPU DVFS for Energy-Efficient LLM Inference Serving","authors":"Andreas Kosmas Kakolyris;Dimosthenis Masouros;Sotirios Xydis;Dimitrios Soudris","doi":"10.1109/LCA.2024.3406038","DOIUrl":null,"url":null,"abstract":"The increasing popularity of LLM-based chatbots combined with their reliance on power-hungry GPU infrastructure forms a critical challenge for providers: minimizing energy consumption under Service-Level Objectives (SLOs) that ensure optimal user experience. Traditional energy optimization methods fall short for LLM inference due to their autoregressive architecture, which renders them incapable of meeting a predefined SLO without \n<italic>energy overprovisioning</i>\n. This autoregressive nature however, allows for iteration-level adjustments, enabling continuous fine-tuning of the system throughout the inference process. In this letter, we propose a solution based on iteration-level GPU Dynamic Voltage Frequency Scaling (DVFS), aiming to reduce the energy impact of LLM serving, an approach that has the potential for more than 22.8% and up to 45.5% energy gains when tested in real world situations under varying SLO constraints. Our approach works on top of existing LLM hosting services, requires minimal profiling and no intervention to the inference serving system.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"23 2","pages":"150-153"},"PeriodicalIF":1.4000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10540202/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing popularity of LLM-based chatbots combined with their reliance on power-hungry GPU infrastructure forms a critical challenge for providers: minimizing energy consumption under Service-Level Objectives (SLOs) that ensure optimal user experience. Traditional energy optimization methods fall short for LLM inference due to their autoregressive architecture, which renders them incapable of meeting a predefined SLO without
energy overprovisioning
. This autoregressive nature however, allows for iteration-level adjustments, enabling continuous fine-tuning of the system throughout the inference process. In this letter, we propose a solution based on iteration-level GPU Dynamic Voltage Frequency Scaling (DVFS), aiming to reduce the energy impact of LLM serving, an approach that has the potential for more than 22.8% and up to 45.5% energy gains when tested in real world situations under varying SLO constraints. Our approach works on top of existing LLM hosting services, requires minimal profiling and no intervention to the inference serving system.
期刊介绍:
IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.