Construction Optimization for Subway Interval Tunnels Crossing a High‑Speed Rail Shield Tunnel at a Short Distance

IF 0.8 4区 工程技术 Q4 ENGINEERING, GEOLOGICAL Soil Mechanics and Foundation Engineering Pub Date : 2024-05-31 DOI:10.1007/s11204-024-09960-0
Ruilang Cao, Linjun Peng, Yufei Zhao
{"title":"Construction Optimization for Subway Interval Tunnels Crossing a High‑Speed Rail Shield Tunnel at a Short Distance","authors":"Ruilang Cao, Linjun Peng, Yufei Zhao","doi":"10.1007/s11204-024-09960-0","DOIUrl":null,"url":null,"abstract":"<p>It is a high-risk project in most cases for urban subway tunnels to pass through structures at close distances. In order to effectively control the stratum deformation and reduce the construction disturbance, it is extremely critical to select a practical tunnel construction method. Based on the Jing-Zhang high-speed rail shield tunnel under an extremely small interval of the subway section of Beijing Line 12 in China, a numerical simulation was conducted regarding the bench-cut method, the temporary inverted arch (TIA) method, the center diaphragm method, and the center cross diaphragm method. The key issues are discussed in detail, such as the laws of the stratum deformation, the surface subsidence pattern, the deformation of the shield segment, and the force characteristics of the supporting structure. The research results show that the maximum deformation of the shield segment caused by subway construction is within the range of ±15 m from the central section of the double interval. The TIA method not only reduces the stress caused by the bending moment of the initial support, but also takes full advantage of the locking effect of the anchor pipe, and the stratum deformation is well controlled.</p>","PeriodicalId":21918,"journal":{"name":"Soil Mechanics and Foundation Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Mechanics and Foundation Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11204-024-09960-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

It is a high-risk project in most cases for urban subway tunnels to pass through structures at close distances. In order to effectively control the stratum deformation and reduce the construction disturbance, it is extremely critical to select a practical tunnel construction method. Based on the Jing-Zhang high-speed rail shield tunnel under an extremely small interval of the subway section of Beijing Line 12 in China, a numerical simulation was conducted regarding the bench-cut method, the temporary inverted arch (TIA) method, the center diaphragm method, and the center cross diaphragm method. The key issues are discussed in detail, such as the laws of the stratum deformation, the surface subsidence pattern, the deformation of the shield segment, and the force characteristics of the supporting structure. The research results show that the maximum deformation of the shield segment caused by subway construction is within the range of ±15 m from the central section of the double interval. The TIA method not only reduces the stress caused by the bending moment of the initial support, but also takes full advantage of the locking effect of the anchor pipe, and the stratum deformation is well controlled.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
短距离穿越高速铁路盾构隧道的地铁区间隧道施工优化
在大多数情况下,城市地铁隧道要近距离穿过建筑物,是一项高风险工程。为了有效控制地层变形,减少施工扰动,选择切实可行的隧道施工方法至关重要。基于中国北京地铁 12 号线地铁区间极小区间下的京张高铁盾构隧道,对台阶切割法、临时倒拱法(TIA)、中心连续墙法和中心横隔梁法进行了数值模拟。详细讨论了地层变形规律、地表沉降规律、盾构段变形、支护结构受力特征等关键问题。研究结果表明,地铁施工引起的盾构段最大变形量在双区间中心段±15 m范围内。TIA法不仅降低了初期支护弯矩引起的应力,而且充分利用了锚管的锁定作用,地层变形得到了很好的控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
12.50%
发文量
65
审稿时长
6 months
期刊介绍: Soil Mechanics and Foundation Engineering provides the Western engineer with a look at Russian advances in heavy construction techniques. Detailed contributions by experienced civil engineers offer insights into current difficulties in the field, applicable innovative solutions, and recently developed guidelines for soil analysis and foundation design.
期刊最新文献
Strength Degradation of Fractured Sandstone After Thawing of an Inclined Shaft Produced by Artificial Freezing Numerical Analysis of Pullout Bearing Capacity of End-Bearing Torpedo Anchors A Method for Calculating the Amount of Unfrozen Water in Frozen Saline Soils The Effect of Temperature Pathways on Unfrozen Water and Thermal Parameters of Frozen Soils Permeability Characteristics of Sedimentary Fine Tailings Including the Degree of Compaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1