Yaqiong Lv, Xiaohu Zhang, Yiwei Cheng, Carman K. M. Lee
{"title":"Intelligent fault diagnosis of machinery based on hybrid deep learning with multi temporal correlation feature fusion","authors":"Yaqiong Lv, Xiaohu Zhang, Yiwei Cheng, Carman K. M. Lee","doi":"10.1002/qre.3597","DOIUrl":null,"url":null,"abstract":"With the advent of intelligent manufacturing era, higher requirements are put forward for the fault diagnosis technology of machinery. The existing data‐driven approaches either rely on specialized empirical knowledge for feature analysis, or adopt single deep neural network topology structure for automatic feature extraction with compromise of certain information loss especially the time‐series information's sacrifice, which both eventually affect the diagnosis accuracy. To address the issue, this paper proposes a novel multi‐temporal correlation feature fusion net (MTCFF‐Net) for intelligent fault diagnosis, which can capture and retain time‐series fault feature information from different dimensions. MTCFF‐Net contains four sub‐networks, which are long and short‐term memory (LSTM) sub‐network, Gramian angular summation field (GASF)‐GhostNet sub‐network and Markov transition field (MTF)‐GhostNet sub‐network and feature fusion sub‐network. Features of different dimensional are extracted through parallel LSTM sub‐network, GASF‐GhostNet sub‐network and MTF‐GhostNet sub‐network, and then fused by feature fusion sub‐network for accurate fault diagnosis. Two fault diagnosis experimental studies on bearings are implemented to validate the effectiveness and generalization of the proposed MTCFF‐Net. Experimental results demonstrate that the proposed model is superior to other comparative approaches.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3597","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the advent of intelligent manufacturing era, higher requirements are put forward for the fault diagnosis technology of machinery. The existing data‐driven approaches either rely on specialized empirical knowledge for feature analysis, or adopt single deep neural network topology structure for automatic feature extraction with compromise of certain information loss especially the time‐series information's sacrifice, which both eventually affect the diagnosis accuracy. To address the issue, this paper proposes a novel multi‐temporal correlation feature fusion net (MTCFF‐Net) for intelligent fault diagnosis, which can capture and retain time‐series fault feature information from different dimensions. MTCFF‐Net contains four sub‐networks, which are long and short‐term memory (LSTM) sub‐network, Gramian angular summation field (GASF)‐GhostNet sub‐network and Markov transition field (MTF)‐GhostNet sub‐network and feature fusion sub‐network. Features of different dimensional are extracted through parallel LSTM sub‐network, GASF‐GhostNet sub‐network and MTF‐GhostNet sub‐network, and then fused by feature fusion sub‐network for accurate fault diagnosis. Two fault diagnosis experimental studies on bearings are implemented to validate the effectiveness and generalization of the proposed MTCFF‐Net. Experimental results demonstrate that the proposed model is superior to other comparative approaches.
期刊介绍:
Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering.
Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies.
The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal.
Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry.
Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.