4D Feet: Registering Walking Foot Shapes Using Attention Enhanced Dynamic-Synchronized Graph Convolutional LSTM Network

FARZAM TAJDARI;TOON HUYSMANS;XINHE YAO;JUN XU;MARYAM ZEBARJADI;YU SONG
{"title":"4D Feet: Registering Walking Foot Shapes Using Attention Enhanced Dynamic-Synchronized Graph Convolutional LSTM Network","authors":"FARZAM TAJDARI;TOON HUYSMANS;XINHE YAO;JUN XU;MARYAM ZEBARJADI;YU SONG","doi":"10.1109/OJCS.2024.3406645","DOIUrl":null,"url":null,"abstract":"4D-scans of dynamic deformable human body parts help researchers have a better understanding of spatiotemporal features. However, reconstructing 4D-scans utilizing multiple asynchronous cameras encounters two main challenges: 1) finding dynamic correspondences among different frames captured by each camera at the timestamps of the camera in terms of dynamic feature recognition, and 2) reconstructing 3D-shapes from the combined point clouds captured by different cameras at asynchronous timestamps in terms of multi-view fusion. Here, we introduce a generic framework able to 1) find and align dynamic features in the 3D-scans captured by each camera using the nonrigid-iterative-closest-farthest-points algorithm; 2) synchronize scans captured by asynchronous cameras through a novel ADGC-LSTM-based-network capable of aligning 3D-scans captured by different cameras to the timeline of a specific camera; and 3) register a high-quality template to synchronized scans at each timestamp to form a high-quality 3D-mesh model using a non-rigid registration method. With a newly developed 4D-foot-scanner, we validate the framework and create the first open-access data-set, namely the 4D-feet. It includes 4D-shapes (15 fps) of the right and left feet of 58 participants (116 feet including 5147 3D-frames), covering significant phases of the gait cycle. The results demonstrate the effectiveness of the proposed framework, especially in synchronizing asynchronous 4D-scans.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"5 ","pages":"343-355"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10541055","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10541055/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

4D-scans of dynamic deformable human body parts help researchers have a better understanding of spatiotemporal features. However, reconstructing 4D-scans utilizing multiple asynchronous cameras encounters two main challenges: 1) finding dynamic correspondences among different frames captured by each camera at the timestamps of the camera in terms of dynamic feature recognition, and 2) reconstructing 3D-shapes from the combined point clouds captured by different cameras at asynchronous timestamps in terms of multi-view fusion. Here, we introduce a generic framework able to 1) find and align dynamic features in the 3D-scans captured by each camera using the nonrigid-iterative-closest-farthest-points algorithm; 2) synchronize scans captured by asynchronous cameras through a novel ADGC-LSTM-based-network capable of aligning 3D-scans captured by different cameras to the timeline of a specific camera; and 3) register a high-quality template to synchronized scans at each timestamp to form a high-quality 3D-mesh model using a non-rigid registration method. With a newly developed 4D-foot-scanner, we validate the framework and create the first open-access data-set, namely the 4D-feet. It includes 4D-shapes (15 fps) of the right and left feet of 58 participants (116 feet including 5147 3D-frames), covering significant phases of the gait cycle. The results demonstrate the effectiveness of the proposed framework, especially in synchronizing asynchronous 4D-scans.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
4D 脚:利用注意力增强型动态同步图卷积 LSTM 网络记录行走的脚形
动态可变形人体部位的 4D 扫描有助于研究人员更好地了解时空特征。然而,利用多台异步相机重建 4D 扫描会遇到两大挑战:1) 在动态特征识别方面,在每个摄像头捕捉到的不同帧的时间戳之间找到动态对应关系;2) 在多视角融合方面,从不同摄像头捕捉到的异步时间戳点云组合中重建三维形状。在此,我们介绍了一个通用框架,该框架能够:1)使用非刚性-迭代-最邻近-最远点算法在每个摄像头捕获的三维扫描图像中查找并对齐动态特征;2)通过基于 ADGC-LSTM 的新型网络同步异步摄像头捕获的扫描图像,该网络能够将不同摄像头捕获的三维扫描图像对齐特定摄像头的时间轴;以及 3)使用非刚性注册方法在每个时间戳为同步扫描图像注册高质量模板,以形成高质量的三维网格模型。我们利用新开发的四维足部扫描仪验证了这一框架,并创建了第一个开放访问的数据集,即四维足部。它包括 58 名参与者左右脚的 4D 形状(15 帧/秒)(116 只脚,包括 5147 个三维帧),涵盖了步态周期的重要阶段。结果表明了所建议框架的有效性,尤其是在同步异步 4D 扫描方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
期刊最新文献
UVtrack: Multi-Modal Indoor Seamless Localization Using Ultra-Wideband Communication and Vision Sensors 2024 List of Reviewers* New Incoming EIC Editorial Comparative Analysis of Traditional and Modern NLP Techniques on the CoLA Dataset: From POS Tagging to Large Language Models Leveraging Deep Learning and Multimodal Large Language Models for Near-Miss Detection Using Crowdsourced Videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1