{"title":"Rice H2-Type RING E3 Ligase Gene, OsSIRH2-3, Positively Regulates Salt Tolerance by Maintaining Na+/K+ Homeostasis","authors":"Min Seok Choi, Ju Hee Kim, Cheol Seong Jang","doi":"10.1007/s12374-024-09433-9","DOIUrl":null,"url":null,"abstract":"<p>High soil salinity possesses a major challenge for plant growth and productivity. Plants have evolved various mechanisms to withstand the adverse effects of salt stress, including E3 ubiquitin ligases that label salt-responsive proteins for degradation. Here, we characterized the mechanisms RING E3 ubiquitin ligase OsSIRH2-3 (Oryza sativa Salt Induced RING H2-type-3 E3 ligase) used to facilitate salt tolerance in rice. <i>OsSIRH2-3</i> expression was upregulated under high NaCl concentrations and upon abscisic acid (ABA) treatment. OsSIRH2-3 was primarily found in the nucleus of rice protoplasts. The OsSIRH2-3 protein contains an H2-type-RING domain that confers E3 ligase activity. <i>OsSIRH2-3</i> overexpression was also found to be associated with enhanced salt tolerance in transgenic plants, decreased Na<sup>+</sup> accumulation in both roots and leaves, decreased Na<sup>+</sup> transport activity in the xylem sap, increased levels of proline and soluble sugars, elevated activity of reactive oxygen species scavenging enzymes, and altered expression of Na<sup>+</sup>/K<sup>+</sup> transporters. Furthermore, <i>OsSIRH2-3</i>-overexpressing plants also exhibited high sensitivity to exogenous ABA treatment. Our findings demonstrate that OsSIRH2-3 enhances salt tolerance by regulating Na<sup>+</sup>/K<sup>+</sup> homeostasis and modulating Na<sup>+</sup>/K<sup>+</sup> transporter expression. This study illuminates the molecular mechanisms involved in RING E3 ubiquitin ligase-mediated salt tolerance in rice and provides a potential strategy for enhancing crop productivity in saline environments.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12374-024-09433-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
High soil salinity possesses a major challenge for plant growth and productivity. Plants have evolved various mechanisms to withstand the adverse effects of salt stress, including E3 ubiquitin ligases that label salt-responsive proteins for degradation. Here, we characterized the mechanisms RING E3 ubiquitin ligase OsSIRH2-3 (Oryza sativa Salt Induced RING H2-type-3 E3 ligase) used to facilitate salt tolerance in rice. OsSIRH2-3 expression was upregulated under high NaCl concentrations and upon abscisic acid (ABA) treatment. OsSIRH2-3 was primarily found in the nucleus of rice protoplasts. The OsSIRH2-3 protein contains an H2-type-RING domain that confers E3 ligase activity. OsSIRH2-3 overexpression was also found to be associated with enhanced salt tolerance in transgenic plants, decreased Na+ accumulation in both roots and leaves, decreased Na+ transport activity in the xylem sap, increased levels of proline and soluble sugars, elevated activity of reactive oxygen species scavenging enzymes, and altered expression of Na+/K+ transporters. Furthermore, OsSIRH2-3-overexpressing plants also exhibited high sensitivity to exogenous ABA treatment. Our findings demonstrate that OsSIRH2-3 enhances salt tolerance by regulating Na+/K+ homeostasis and modulating Na+/K+ transporter expression. This study illuminates the molecular mechanisms involved in RING E3 ubiquitin ligase-mediated salt tolerance in rice and provides a potential strategy for enhancing crop productivity in saline environments.