Integration of generative machine learning with the heuristic crystal structure prediction code FUSE

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL Faraday Discussions Pub Date : 2024-05-30 DOI:10.1039/d4fd00094c
Christopher M Collins, Hasan Sayeed, George Darling, John B Claridge, Taylor D. Sparks, Matthew J. Rosseinsky
{"title":"Integration of generative machine learning with the heuristic crystal structure prediction code FUSE","authors":"Christopher M Collins, Hasan Sayeed, George Darling, John B Claridge, Taylor D. Sparks, Matthew J. Rosseinsky","doi":"10.1039/d4fd00094c","DOIUrl":null,"url":null,"abstract":"The prediction of new compounds via crystal structure prediction may transform how the materials chemistry community discovers new compounds. In the prediction of inorganic crystal structures there are three distinct classes of prediction; Performing crystal structure prediction via heuristic algorithms, using a range of established crystal structure prediction codes, an emerging community using generative machine learning models to predict crystal structures directly and the use of mathematical optimisation to solve crystal structures exactly. In this work, we demonstrate the combination of heuristic and generative machine learning, the use of a generative machine learning model to produce the starting population of crystal structures for a heuristic algorithm and discuss the benefits, demonstrating the method on eight known compounds with reported crystal structures and three hypothetical compounds. We show that the integration of machine learning structure generation with heuristic structure prediction results in both faster compute times per structure and lower energies. This work provides to the community a set of eleven compounds with varying chemistry and complexity that can be used as a benchmark for new crystal structure prediction methods as they emerge.","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"68 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4fd00094c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The prediction of new compounds via crystal structure prediction may transform how the materials chemistry community discovers new compounds. In the prediction of inorganic crystal structures there are three distinct classes of prediction; Performing crystal structure prediction via heuristic algorithms, using a range of established crystal structure prediction codes, an emerging community using generative machine learning models to predict crystal structures directly and the use of mathematical optimisation to solve crystal structures exactly. In this work, we demonstrate the combination of heuristic and generative machine learning, the use of a generative machine learning model to produce the starting population of crystal structures for a heuristic algorithm and discuss the benefits, demonstrating the method on eight known compounds with reported crystal structures and three hypothetical compounds. We show that the integration of machine learning structure generation with heuristic structure prediction results in both faster compute times per structure and lower energies. This work provides to the community a set of eleven compounds with varying chemistry and complexity that can be used as a benchmark for new crystal structure prediction methods as they emerge.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生成式机器学习与启发式晶体结构预测代码 FUSE 的整合
通过晶体结构预测来预测新化合物可能会改变材料化学界发现新化合物的方式。在无机晶体结构预测方面,有三种截然不同的预测方法:通过启发式算法进行晶体结构预测,使用一系列成熟的晶体结构预测代码;新兴群体使用生成式机器学习模型直接预测晶体结构;使用数学优化方法精确求解晶体结构。在这项工作中,我们展示了启发式和生成式机器学习的结合,使用生成式机器学习模型为启发式算法生成起始晶体结构群,并讨论了这种方法的益处,在 8 种已报告晶体结构的已知化合物和 3 种假设化合物上进行了演示。我们的研究表明,将机器学习结构生成与启发式结构预测相结合,不仅能加快每个结构的计算时间,还能降低能量。这项工作为学术界提供了一组具有不同化学性质和复杂性的 11 种化合物,可作为新晶体结构预测方法出现时的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Faraday Discussions
Faraday Discussions 化学-物理化学
自引率
0.00%
发文量
259
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
期刊最新文献
Discovering synthesis targets: general discussion. Discovering trends in big data: general discussion. Discovering structure-property correlations: general discussion. Discovering chemical structure: general discussion. Understanding dynamics and mechanisms: general discussion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1