T. S. Kuznetsova, A. E. Burakov, O. A. Ananyeva, I. V. Burakova, A. E. Memetova, V. O. Yarkin, A. G. Tkachev
{"title":"Kinetics of Lead Sorption from Aqueous Solutions on Nanostructured Cryogel Modified with Organic Polymers","authors":"T. S. Kuznetsova, A. E. Burakov, O. A. Ananyeva, I. V. Burakova, A. E. Memetova, V. O. Yarkin, A. G. Tkachev","doi":"10.1134/S1061933X24600131","DOIUrl":null,"url":null,"abstract":"<p>The article proposes a method for producing polyaniline-modified nanocomposite cryogel based on oxidized carbon nanotubes and reduced graphene oxide. Phenol–formaldehyde resin has been used as a crosslinking agent. Cryogel has been obtained by freeze drying in vacuum. Then, the material has been subjected to a post-processing, i.e., the carbonization in a tubular furnace. The obtained nanocomposite has been subjected to the comprehensive diagnostics by the methods of scanning and transmission electron microscopy, IR spectroscopy, X-ray diffraction analysis, and Raman spectroscopy. The parameters of the pore space have been estimated by nitrogen adsorption. It has been found that the carbonized nanocomposite cryogel is a mesoporous material with a specific surface area of 299 m<sup>2</sup>/g. IR and Raman spectra and X-ray diffraction patterns of the starting materials have been compared with the spectra of the carbonized cryogel. According to the results obtained, the nanocomposite exhibits peaks of all starting materials. The sorption capacity of the material has been evaluated by the example of the sorption of ions of a heavy metal, lead, from model aqueous solutions. Kinetic studies of adsorption in a limited volume have been carried out to determine the mechanism and time of the adsorption. It has been revealed that 99% of the contaminant is sorbed during the first 15 min, while an adsorption capacity of 295 mg/g is reached. The Elovich model, pseudo-first- and pseudo-second-order models, and an intradiffusion model have been employed to confirm the proposed adsorption mechanism.</p>","PeriodicalId":521,"journal":{"name":"Colloid Journal","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061933X24600131","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The article proposes a method for producing polyaniline-modified nanocomposite cryogel based on oxidized carbon nanotubes and reduced graphene oxide. Phenol–formaldehyde resin has been used as a crosslinking agent. Cryogel has been obtained by freeze drying in vacuum. Then, the material has been subjected to a post-processing, i.e., the carbonization in a tubular furnace. The obtained nanocomposite has been subjected to the comprehensive diagnostics by the methods of scanning and transmission electron microscopy, IR spectroscopy, X-ray diffraction analysis, and Raman spectroscopy. The parameters of the pore space have been estimated by nitrogen adsorption. It has been found that the carbonized nanocomposite cryogel is a mesoporous material with a specific surface area of 299 m2/g. IR and Raman spectra and X-ray diffraction patterns of the starting materials have been compared with the spectra of the carbonized cryogel. According to the results obtained, the nanocomposite exhibits peaks of all starting materials. The sorption capacity of the material has been evaluated by the example of the sorption of ions of a heavy metal, lead, from model aqueous solutions. Kinetic studies of adsorption in a limited volume have been carried out to determine the mechanism and time of the adsorption. It has been revealed that 99% of the contaminant is sorbed during the first 15 min, while an adsorption capacity of 295 mg/g is reached. The Elovich model, pseudo-first- and pseudo-second-order models, and an intradiffusion model have been employed to confirm the proposed adsorption mechanism.
期刊介绍:
Colloid Journal (Kolloidnyi Zhurnal) is the only journal in Russia that publishes the results of research in the area of chemical science dealing with the disperse state of matter and surface phenomena in disperse systems. The journal covers experimental and theoretical works on a great variety of colloid and surface phenomena: the structure and properties of interfaces; adsorption phenomena and structure of adsorption layers of surfactants; capillary phenomena; wetting films; wetting and spreading; and detergency. The formation of colloid systems, their molecular-kinetic and optical properties, surface forces, interaction of colloidal particles, stabilization, and criteria of stability loss of different disperse systems (lyosols and aerosols, suspensions, emulsions, foams, and micellar systems) are also topics of the journal. Colloid Journal also includes the phenomena of electro- and diffusiophoresis, electro- and thermoosmosis, and capillary and reverse osmosis, i.e., phenomena dealing with the existence of diffusion layers of molecules and ions in the vicinity of the interface.