When can we trust structural models derived from pair distribution function measurements?

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL Faraday Discussions Pub Date : 2024-05-30 DOI:10.1039/d4fd00106k
Phillip M. Maffettone, William Fletcher, Thomas Christian Nicholas, Volker L. Deringer, Jane R. Allison, Lorna Smith, Andrew Goodwin
{"title":"When can we trust structural models derived from pair distribution function measurements?","authors":"Phillip M. Maffettone, William Fletcher, Thomas Christian Nicholas, Volker L. Deringer, Jane R. Allison, Lorna Smith, Andrew Goodwin","doi":"10.1039/d4fd00106k","DOIUrl":null,"url":null,"abstract":"The pair distribution function (PDF) is an important metric for characterising structure in complex materials, but it is well known that meaningfully different structural models can sometimes give rise to equivalent PDFs. In this paper, we discuss the use of model likelihoods as a general approach for discriminating between such homometric structure solutions. Drawing on two main case studies---one concerning the structure of a small peptide and the other amorphous calcium carbonate---we show how consideration of model likelihood can help drive robust structure solution even in cases where the PDF is particularly information poor. The obvious thread of these individual case studies is the potential role for machine learning approaches to help guide structure determination from the PDF, and our paper finishes with some forward-looking discussion along these lines.","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"32 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4fd00106k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The pair distribution function (PDF) is an important metric for characterising structure in complex materials, but it is well known that meaningfully different structural models can sometimes give rise to equivalent PDFs. In this paper, we discuss the use of model likelihoods as a general approach for discriminating between such homometric structure solutions. Drawing on two main case studies---one concerning the structure of a small peptide and the other amorphous calcium carbonate---we show how consideration of model likelihood can help drive robust structure solution even in cases where the PDF is particularly information poor. The obvious thread of these individual case studies is the potential role for machine learning approaches to help guide structure determination from the PDF, and our paper finishes with some forward-looking discussion along these lines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
什么时候我们可以相信从配对分布函数测量中得出的结构模型?
对分布函数(PDF)是表征复杂材料结构的重要指标,但众所周知,有意义的不同结构模型有时会产生等效的 PDF。在本文中,我们将讨论如何使用模型似然值作为区分此类等效结构解的一般方法。通过两个主要的案例研究--一个是关于小肽的结构,另一个是关于无定形碳酸钙--我们展示了即使在 PDF 信息特别贫乏的情况下,考虑模型似然性如何有助于推动稳健的结构求解。这些单独案例研究的明显线索是机器学习方法在帮助指导 PDF 结构确定方面的潜在作用,我们的论文最后沿着这些线索进行了一些前瞻性讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Faraday Discussions
Faraday Discussions 化学-物理化学
自引率
0.00%
发文量
259
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
期刊最新文献
Discovering synthesis targets: general discussion. Discovering trends in big data: general discussion. Discovering structure-property correlations: general discussion. Discovering chemical structure: general discussion. Understanding dynamics and mechanisms: general discussion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1