Extensions and investigations of space‐time generalized Riemann problems numerical schemes for linear systems of conservation laws with source terms

IF 1.7 3区 数学 Q1 MATHEMATICS, APPLIED Numerical Methods for Partial Differential Equations Pub Date : 2024-05-31 DOI:10.1002/num.23118
Rodolphe Turpault
{"title":"Extensions and investigations of space‐time generalized Riemann problems numerical schemes for linear systems of conservation laws with source terms","authors":"Rodolphe Turpault","doi":"10.1002/num.23118","DOIUrl":null,"url":null,"abstract":"The space‐time generalized Riemann problems method allows to obtain numerical schemes of arbitrary high order that can be used with very large time steps for systems of linear hyperbolic conservation laws with source term. They have been introduced in Berthon et al. (J. Sci. Comput. 55 (2013), 268–308.) in 1D and on 2D unstructured meshes made of triangles. The objective of this article is to complement them in order to answer some important questions arising when they are involved. The formulation is described in detail on quadrangle meshes, the choice of approximation basis is discussed and Legendre polynomials are used in practical cases. The addition of a limiter to preserve certain properties without compromising accuracy is also considered. Finally, the asymptotic behavior of the scheme in the diffusion regime is studied.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"43 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23118","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The space‐time generalized Riemann problems method allows to obtain numerical schemes of arbitrary high order that can be used with very large time steps for systems of linear hyperbolic conservation laws with source term. They have been introduced in Berthon et al. (J. Sci. Comput. 55 (2013), 268–308.) in 1D and on 2D unstructured meshes made of triangles. The objective of this article is to complement them in order to answer some important questions arising when they are involved. The formulation is described in detail on quadrangle meshes, the choice of approximation basis is discussed and Legendre polynomials are used in practical cases. The addition of a limiter to preserve certain properties without compromising accuracy is also considered. Finally, the asymptotic behavior of the scheme in the diffusion regime is studied.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带源项线性守恒定律系统的时空广义黎曼问题数值方案的扩展与研究
时空广义黎曼问题法可以获得任意高阶的数值方案,可用于具有源项的线性双曲守恒定律系统的超大时间步长。Berthon 等人(J. Sci. Comput.55 (2013), 268-308.) 中介绍过在一维和二维三角形非结构网格上的应用。本文的目的是对它们进行补充,以回答涉及它们时出现的一些重要问题。本文详细介绍了四边形网格的计算方法,讨论了近似基础的选择,并在实际案例中使用了 Legendre 多项式。此外,还考虑了在不影响精度的情况下添加限幅器以保持某些特性的问题。最后,研究了该方案在扩散机制中的渐近行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
2.60%
发文量
81
审稿时长
9 months
期刊介绍: An international journal that aims to cover research into the development and analysis of new methods for the numerical solution of partial differential equations, it is intended that it be readily readable by and directed to a broad spectrum of researchers into numerical methods for partial differential equations throughout science and engineering. The numerical methods and techniques themselves are emphasized rather than the specific applications. The Journal seeks to be interdisciplinary, while retaining the common thread of applied numerical analysis.
期刊最新文献
Compactness results for a Dirichlet energy of nonlocal gradient with applications Layer‐parallel training of residual networks with auxiliary variable networks Error bound of the multilevel fast multipole method for 3‐D scattering problems An explicit fourth‐order hybrid‐variable method for Euler equations with a residual‐consistent viscosity Exponential time difference methods with spatial exponential approximations for solving boundary layer problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1