{"title":"GPINN with Neural Tangent Kernel Technique for Nonlinear Two Point Boundary Value Problems","authors":"Navnit Jha, Ekansh Mallik","doi":"10.1007/s11063-024-11644-7","DOIUrl":null,"url":null,"abstract":"<p>Neural networks as differential equation solvers are a good choice of numerical technique because of their fast solutions and their nature in tackling some classical problems which traditional numerical solvers faced. In this article, we look at the famous gradient descent optimization technique, which trains the network by updating parameters which minimizes the loss function. We look at the theoretical part of gradient descent to understand why the network works great for some terms of the loss function and not so much for other terms. The loss function considered here is built in such a way that it incorporates the differential equation as well as the derivative of the differential equation. The fully connected feed-forward network is designed in such a way that, without training at boundary points, it automatically satisfies the boundary conditions. The neural tangent kernel for gradient enhanced physics informed neural networks is examined in this work, and we demonstrate how it may be used to generate a closed-form expression for the kernel function. We also provide numerical experiments demonstrating the effectiveness of the new approach for several two point boundary value problems. Our results suggest that the neural tangent kernel based approach can significantly improve the computational accuracy of the gradient enhanced physics informed neural network while reducing the computational cost of training these models.</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"15 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11644-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Neural networks as differential equation solvers are a good choice of numerical technique because of their fast solutions and their nature in tackling some classical problems which traditional numerical solvers faced. In this article, we look at the famous gradient descent optimization technique, which trains the network by updating parameters which minimizes the loss function. We look at the theoretical part of gradient descent to understand why the network works great for some terms of the loss function and not so much for other terms. The loss function considered here is built in such a way that it incorporates the differential equation as well as the derivative of the differential equation. The fully connected feed-forward network is designed in such a way that, without training at boundary points, it automatically satisfies the boundary conditions. The neural tangent kernel for gradient enhanced physics informed neural networks is examined in this work, and we demonstrate how it may be used to generate a closed-form expression for the kernel function. We also provide numerical experiments demonstrating the effectiveness of the new approach for several two point boundary value problems. Our results suggest that the neural tangent kernel based approach can significantly improve the computational accuracy of the gradient enhanced physics informed neural network while reducing the computational cost of training these models.
期刊介绍:
Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches.
The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters