Scaling laws governing the elastic properties of 3D graphenes

IF 4.4 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Science China Technological Sciences Pub Date : 2024-05-29 DOI:10.1007/s11431-023-2544-6
Ming Li, Guo Lu, HaoDong Yu, MengLei Li, FaWei Zheng
{"title":"Scaling laws governing the elastic properties of 3D graphenes","authors":"Ming Li, Guo Lu, HaoDong Yu, MengLei Li, FaWei Zheng","doi":"10.1007/s11431-023-2544-6","DOIUrl":null,"url":null,"abstract":"<p>In this study, we comprehensively investigated the scaling law for elastic properties of three-dimensional honeycomb-like graphenes (3D graphenes) using hybrid neural network potential-based molecular dynamics simulations and theoretical analyses. The elastic constants were obtained as functions of honeycomb hole size, denoted by the graphene wall length <i>L</i>. All five independent elastic constants in the large-<i>L</i> limit are proportional to <i>L</i><sup>−1</sup>. The associated coefficients are combinations of elastic constants of two-dimensional graphene. High-order terms including <i>L</i><sup>−2</sup> and <i>L</i><sup>−3</sup> emerge for finite <i>L</i> values. They have three origins, the distorted areas close to the joint lines of 3D graphenes, the variation in solid angles between graphene plates, and the bending distortion of graphene plates. Significantly, the chirality becomes essential with decreasing <i>L</i> because the joint line structures are different between the armchair and zigzag-type 3D graphenes. Our findings provide insights into the elastic properties of graphene-based superstructures and can be used for further studies on graphene-based materials.</p>","PeriodicalId":21612,"journal":{"name":"Science China Technological Sciences","volume":"50 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Technological Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11431-023-2544-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we comprehensively investigated the scaling law for elastic properties of three-dimensional honeycomb-like graphenes (3D graphenes) using hybrid neural network potential-based molecular dynamics simulations and theoretical analyses. The elastic constants were obtained as functions of honeycomb hole size, denoted by the graphene wall length L. All five independent elastic constants in the large-L limit are proportional to L−1. The associated coefficients are combinations of elastic constants of two-dimensional graphene. High-order terms including L−2 and L−3 emerge for finite L values. They have three origins, the distorted areas close to the joint lines of 3D graphenes, the variation in solid angles between graphene plates, and the bending distortion of graphene plates. Significantly, the chirality becomes essential with decreasing L because the joint line structures are different between the armchair and zigzag-type 3D graphenes. Our findings provide insights into the elastic properties of graphene-based superstructures and can be used for further studies on graphene-based materials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维石墨烯弹性特性的缩放定律
在这项研究中,我们利用基于混合神经网络势的分子动力学模拟和理论分析,全面研究了三维蜂窝状石墨烯(3D graphenes)弹性特性的缩放规律。弹性常数是蜂窝孔尺寸的函数,用石墨烯壁长 L 表示。相关系数是二维石墨烯弹性常数的组合。包括 L-2 和 L-3 在内的高阶项在有限 L 值时出现。它们有三个来源:靠近三维石墨烯连接线的扭曲区域、石墨烯板之间实体角的变化以及石墨烯板的弯曲变形。值得注意的是,随着 L 的减小,手性变得至关重要,因为扶手和人字形三维石墨烯的连接线结构是不同的。我们的研究结果有助于深入了解石墨烯基超结构的弹性特性,并可用于对石墨烯基材料的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science China Technological Sciences
Science China Technological Sciences ENGINEERING, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
10.90%
发文量
4380
审稿时长
3.3 months
期刊介绍: Science China Technological Sciences, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research. Science China Technological Sciences is published in both print and electronic forms. It is indexed by Science Citation Index. Categories of articles: Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested. Research papers report on important original results in all areas of technological sciences. Brief reports present short reports in a timely manner of the latest important results.
期刊最新文献
A novel method for extracting and optimizing the complex permittivity of paper-based composites based on an artificial neural network model A systematic framework of constructing surrogate model for slider track peeling strength prediction Bridging the Fabry–Perot cavity and asymmetric Berreman mode for long-wave infrared nonreciprocal thermal emitters Unveiling the protective role of biofilm formation on the photoaging of microplastics Adhesive hydrogel interface for enhanced epidermal signal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1