{"title":"Optimization of steam curing process for Chinese Western and Northeast regions' high‐speed railway concrete prefabricated components","authors":"Yu Xiang, Peilun Duan, Jilin Wang, Guokang Jiang, Zuhao Hu, Qiyuan Xiao, Xiaohui Zeng","doi":"10.1002/suco.202400079","DOIUrl":null,"url":null,"abstract":"This article aims to address the issues of high curing temperatures and thermal damage in the production of prefabricated concrete components for high‐speed railways in high‐altitude and high‐latitude cold regions of China. Various steam‐curing processes for concrete are designed to optimize the high‐quality preparation process of steam‐cured concrete prefabricated components in cold environments. With the goal of controlling the residual expansion deformation and considering the overall impact of curing process on the mechanics, durability, and interface transition zone of steam‐cured concrete, the main conclusions obtained in this study are as follows. Within a pre‐curing time of 3–6 h, when the curing temperature is maintained at 45–60°C, the final residual expansion deformation can be controlled below 300 με. The compressive strength, dynamic elastic modulus, peak stress, water absorption and Chloride ion resistance of steam‐cured concrete show the great improvement under above curing processes. Curing at 80°C should be actively avoided, and it is recommended to adopt a 6 h pre‐curing time with a maximum curing temperature of 45°C, especially for cold regions in China. This study can serve as a valuable reference and provide support for the preparation of prefabricated concrete components in Chinese high‐altitude and high‐latitude areas.","PeriodicalId":21988,"journal":{"name":"Structural Concrete","volume":"59 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Concrete","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/suco.202400079","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This article aims to address the issues of high curing temperatures and thermal damage in the production of prefabricated concrete components for high‐speed railways in high‐altitude and high‐latitude cold regions of China. Various steam‐curing processes for concrete are designed to optimize the high‐quality preparation process of steam‐cured concrete prefabricated components in cold environments. With the goal of controlling the residual expansion deformation and considering the overall impact of curing process on the mechanics, durability, and interface transition zone of steam‐cured concrete, the main conclusions obtained in this study are as follows. Within a pre‐curing time of 3–6 h, when the curing temperature is maintained at 45–60°C, the final residual expansion deformation can be controlled below 300 με. The compressive strength, dynamic elastic modulus, peak stress, water absorption and Chloride ion resistance of steam‐cured concrete show the great improvement under above curing processes. Curing at 80°C should be actively avoided, and it is recommended to adopt a 6 h pre‐curing time with a maximum curing temperature of 45°C, especially for cold regions in China. This study can serve as a valuable reference and provide support for the preparation of prefabricated concrete components in Chinese high‐altitude and high‐latitude areas.
期刊介绍:
Structural Concrete, the official journal of the fib, provides conceptual and procedural guidance in the field of concrete construction, and features peer-reviewed papers, keynote research and industry news covering all aspects of the design, construction, performance in service and demolition of concrete structures.
Main topics:
design, construction, performance in service, conservation (assessment, maintenance, strengthening) and demolition of concrete structures
research about the behaviour of concrete structures
development of design methods
fib Model Code
sustainability of concrete structures.