Fracture evaluation of the plutonic basement in the Upper Magdalena Basin: Implications for the development of naturally fractured reservoirs in the Northern Andes
Maryi Rodríguez-Cuevas, Agustín Cardona, Gaspar Monsalve, Sebastián Zapata, Juan Camilo Valencia-Gómez
{"title":"Fracture evaluation of the plutonic basement in the Upper Magdalena Basin: Implications for the development of naturally fractured reservoirs in the Northern Andes","authors":"Maryi Rodríguez-Cuevas, Agustín Cardona, Gaspar Monsalve, Sebastián Zapata, Juan Camilo Valencia-Gómez","doi":"10.1002/gj.4980","DOIUrl":null,"url":null,"abstract":"<p>Plutonic rocks typically have negligible matrix porosity and permeability. However, fractures and mineral alterations create storage space and flow pathways that turn plutonic rocks into fluid reservoirs. Despite significant hydrocarbon discoveries, naturally fractured reservoirs in plutonic rocks have been poorly studied. In most Colombian basins, the crystalline basement has undergone multiple deformational events and is thrust over the Cretaceous to Cenozoic source and reservoir rocks of the conventional petroleum system. This structural configuration is ideal for the migration of oil into a fractured basement. A multiscale fracture analysis, including field, petrographical and petrophysical techniques was conducted on the Permian and Jurassic plutonic basement of Upper Magdalena Basin in order to understand the controls on brittle deformation, the development of fracture networks and their potential to form hydrocarbon reservoirs. The results indicate that protolith textures and structures, including magmatic and mylonitic foliation, favours fracturing. Dykes exhibit higher fracture density (7–48 fractures/m), porosity (mean = 0.4%) and permeability (mean = 125,818.75 mD) than the host rock (2–25 fractures/m; 0.23%; 12,066.09 mD). Intersection zones from regional faults, are characterized by the highest fracture and lineament intensity. Our results suggest that dyke swarms and interacting damage zones can significantly enhance the reservoir quality of plutonic rocks by providing storage in fractures and fluid pathways to the host rock.</p>","PeriodicalId":12784,"journal":{"name":"Geological Journal","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Journal","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gj.4980","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Plutonic rocks typically have negligible matrix porosity and permeability. However, fractures and mineral alterations create storage space and flow pathways that turn plutonic rocks into fluid reservoirs. Despite significant hydrocarbon discoveries, naturally fractured reservoirs in plutonic rocks have been poorly studied. In most Colombian basins, the crystalline basement has undergone multiple deformational events and is thrust over the Cretaceous to Cenozoic source and reservoir rocks of the conventional petroleum system. This structural configuration is ideal for the migration of oil into a fractured basement. A multiscale fracture analysis, including field, petrographical and petrophysical techniques was conducted on the Permian and Jurassic plutonic basement of Upper Magdalena Basin in order to understand the controls on brittle deformation, the development of fracture networks and their potential to form hydrocarbon reservoirs. The results indicate that protolith textures and structures, including magmatic and mylonitic foliation, favours fracturing. Dykes exhibit higher fracture density (7–48 fractures/m), porosity (mean = 0.4%) and permeability (mean = 125,818.75 mD) than the host rock (2–25 fractures/m; 0.23%; 12,066.09 mD). Intersection zones from regional faults, are characterized by the highest fracture and lineament intensity. Our results suggest that dyke swarms and interacting damage zones can significantly enhance the reservoir quality of plutonic rocks by providing storage in fractures and fluid pathways to the host rock.
期刊介绍:
In recent years there has been a growth of specialist journals within geological sciences. Nevertheless, there is an important role for a journal of an interdisciplinary kind. Traditionally, GEOLOGICAL JOURNAL has been such a journal and continues in its aim of promoting interest in all branches of the Geological Sciences, through publication of original research papers and review articles. The journal publishes Special Issues with a common theme or regional coverage e.g. Chinese Dinosaurs; Tectonics of the Eastern Mediterranean, Triassic basins of the Central and North Atlantic Borderlands). These are extensively cited.
The Journal has a particular interest in publishing papers on regional case studies from any global locality which have conclusions of general interest. Such papers may emphasize aspects across the full spectrum of geological sciences.