Bond behavior of the interface between concrete and basalt fiber reinforced polymer bar after freeze-thaw cycles

IF 2.9 3区 工程技术 Q2 ENGINEERING, CIVIL Frontiers of Structural and Civil Engineering Pub Date : 2024-05-31 DOI:10.1007/s11709-024-0989-y
Li Hong, Mingming Li, Congming Du, Shenjiang Huang, Binggen Zhan, Qijun Yu
{"title":"Bond behavior of the interface between concrete and basalt fiber reinforced polymer bar after freeze-thaw cycles","authors":"Li Hong, Mingming Li, Congming Du, Shenjiang Huang, Binggen Zhan, Qijun Yu","doi":"10.1007/s11709-024-0989-y","DOIUrl":null,"url":null,"abstract":"<p>The shear bond of interface between concrete and basalt fiber reinforced polymer (BFRP) bars during freeze-thaw (F-T) cycles is crucial for the application of BFRP bar-reinforced concrete structures in cold regions. In this study, 48 groups of pull-out specimens were designed to test the shear bond of the BFRP-concrete interface subjected to F-T cycles. The effects of concrete strength, diameter, and embedment length of BFRP rebar were investigated under numerous F-T cycles. Test results showed that a larger diameter or longer embedment length of BFRP rebar resulted in lower interfacial shear bond behavior, such as interfacial bond strength, initial stiffness, and energy absorption, after the interface goes through F-T cycles. However, higher concrete strength and fewer F-T cycles were beneficial for enhancing the interfacial bond behavior. Subsequently, a three-dimensional (3D) interfacial model based on the finite element method was developed, and the interfacial bond behavior of the specimens was analyzed in-depth. Finally, a degradation bond strength subjected to F-T cycles was predicted by a proposed mechanical model. The predictions were fully consistent with the tested results. The model demonstrated accuracy in describing the shear bond behavior of the interface under numerous F-T cycles.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"46 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-024-0989-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The shear bond of interface between concrete and basalt fiber reinforced polymer (BFRP) bars during freeze-thaw (F-T) cycles is crucial for the application of BFRP bar-reinforced concrete structures in cold regions. In this study, 48 groups of pull-out specimens were designed to test the shear bond of the BFRP-concrete interface subjected to F-T cycles. The effects of concrete strength, diameter, and embedment length of BFRP rebar were investigated under numerous F-T cycles. Test results showed that a larger diameter or longer embedment length of BFRP rebar resulted in lower interfacial shear bond behavior, such as interfacial bond strength, initial stiffness, and energy absorption, after the interface goes through F-T cycles. However, higher concrete strength and fewer F-T cycles were beneficial for enhancing the interfacial bond behavior. Subsequently, a three-dimensional (3D) interfacial model based on the finite element method was developed, and the interfacial bond behavior of the specimens was analyzed in-depth. Finally, a degradation bond strength subjected to F-T cycles was predicted by a proposed mechanical model. The predictions were fully consistent with the tested results. The model demonstrated accuracy in describing the shear bond behavior of the interface under numerous F-T cycles.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冻融循环后混凝土与玄武岩纤维增强聚合物棒材界面的粘结行为
混凝土与玄武岩纤维增强聚合物(BFRP)钢筋之间的界面在冻融循环(F-T)过程中的剪切粘结力对于在寒冷地区应用玄武岩纤维增强聚合物钢筋混凝土结构至关重要。本研究设计了 48 组拉出试件,以测试 BFRP 与混凝土界面在 F-T 循环下的剪切粘结力。在多次 F-T 循环下,研究了混凝土强度、BFRP 钢筋直径和预埋长度的影响。试验结果表明,BFRP 螺纹钢的直径越大或预埋长度越长,界面经过 F-T 循环后的界面剪切粘接性能越低,如界面粘接强度、初始刚度和能量吸收。然而,较高的混凝土强度和较少的 F-T 循环有利于增强界面粘结行为。随后,基于有限元法建立了三维(3D)界面模型,并深入分析了试样的界面粘结行为。最后,通过提出的力学模型预测了 F-T 循环下的降解粘接强度。预测结果与测试结果完全一致。该模型准确地描述了界面在多次 F-T 循环下的剪切粘接行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
3.30%
发文量
734
期刊介绍: Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.
期刊最新文献
An artificial neural network based deep collocation method for the solution of transient linear and nonlinear partial differential equations Bibliographic survey and comprehensive review on mechanical and durability properties of microorganism based self-healing concrete Seismic response of pile-supported structures considering the coupling of inertial and kinematic interactions in different soil sites An isogeometric approach for nonlocal bending and free oscillation of magneto-electro-elastic functionally graded nanobeam with elastic constraints Shaking table test on a tunnel-group metro station in rock site under harmonic excitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1