Perspective on AI for accelerated materials design at the AI4Mat-2023 workshop at NeurIPS 2023

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Digital discovery Pub Date : 2024-05-30 DOI:10.1039/D4DD90010C
Santiago Miret, N. M. Anoop Krishnan, Benjamin Sanchez-Lengeling, Marta Skreta, Vineeth Venugopal and Jennifer N. Wei
{"title":"Perspective on AI for accelerated materials design at the AI4Mat-2023 workshop at NeurIPS 2023","authors":"Santiago Miret, N. M. Anoop Krishnan, Benjamin Sanchez-Lengeling, Marta Skreta, Vineeth Venugopal and Jennifer N. Wei","doi":"10.1039/D4DD90010C","DOIUrl":null,"url":null,"abstract":"<p >Applications of advanced artificial intelligence (AI) methods in the materials science domain has grown significantly in recent years resulting in numerous research efforts spanning diverse aspects of materials design, materials synthesis, and materials characterization. The AI for Accelerated Materials Design (AI4Mat) workshop at NeurIPS 2023 featured many of the ongoing major research themes by bringing together an international interdisciplinary community of researchers and enthusiasts across academia, industry, and national labs. The goal of these discussions was to highlight cutting-edge work from active researchers in these fields and uncover major impactful research problems that the community can jointly address. In this article, the AI4Mat-2023 organizing committee showcases the major developments in the field as well as ongoing research challenges where innovative solutions can bring transformative changes to the state-of-the-art in applying AI for accelerated materials design. The editors of <em>Digital Discovery</em> are pleased to feature this overview, and a selection of these manuscripts, in a new themed collection.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 6","pages":" 1081-1085"},"PeriodicalIF":6.2000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd90010c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd90010c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Applications of advanced artificial intelligence (AI) methods in the materials science domain has grown significantly in recent years resulting in numerous research efforts spanning diverse aspects of materials design, materials synthesis, and materials characterization. The AI for Accelerated Materials Design (AI4Mat) workshop at NeurIPS 2023 featured many of the ongoing major research themes by bringing together an international interdisciplinary community of researchers and enthusiasts across academia, industry, and national labs. The goal of these discussions was to highlight cutting-edge work from active researchers in these fields and uncover major impactful research problems that the community can jointly address. In this article, the AI4Mat-2023 organizing committee showcases the major developments in the field as well as ongoing research challenges where innovative solutions can bring transformative changes to the state-of-the-art in applying AI for accelerated materials design. The editors of Digital Discovery are pleased to feature this overview, and a selection of these manuscripts, in a new themed collection.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在 NeurIPS 2023 会议的 AI4Mat-2023 研讨会上展望人工智能加速材料设计
近年来,先进的人工智能(AI)方法在材料科学领域的应用有了长足的发展,从而产生了大量的研究成果,涉及材料设计、材料合成和材料表征等多个方面。在 NeurIPS 2023 会议期间举办的人工智能加速材料设计(AI4Mat)研讨会汇集了学术界、工业界和国家实验室的国际跨学科研究人员和爱好者,介绍了许多正在进行的主要研究课题。这些讨论的目的是突出这些领域活跃研究人员的前沿工作,并发现社区可以共同解决的具有重大影响的研究问题。在这篇文章中,AI4Mat-2023 组委会展示了该领域的主要发展以及正在进行的研究挑战,在这些挑战中,创新解决方案可以为应用人工智能加速材料设计的最新技术带来变革。Digital Discovery》的编辑们很高兴能在新的主题文集中介绍这篇综述以及其中的部分手稿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Back cover ArcaNN: automated enhanced sampling generation of training sets for chemically reactive machine learning interatomic potentials. Sorting polyolefins with near-infrared spectroscopy: identification of optimal data analysis pipelines and machine learning classifiers†‡ High accuracy uncertainty-aware interatomic force modeling with equivariant Bayesian neural networks† Correction: A smile is all you need: predicting limiting activity coefficients from SMILES with natural language processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1