{"title":"Crack identification in concrete, using digital image correlation and neural network","authors":"Jingyi Wang, Dong Lei, Kaiyang Zhou, Jintao He, Feipeng Zhu, Pengxiang Bai","doi":"10.1007/s11709-024-1013-2","DOIUrl":null,"url":null,"abstract":"<p>In engineering applications, concrete crack monitoring is very important. Traditional methods are of low efficiency, low accuracy, have poor timeliness, and are applicable in only a limited number of scenarios. Therefore, more comprehensive detection of concrete damage under different scenarios is of high value for practical engineering applications. Digital image correlation (DIC) technology can provide a large amount of experimental data, and neural network (NN) can process very rich data. Therefore, NN, including convolutional neural networks (CNN) and back propagation neural networks (BP), can be combined with DIC technology to analyze experimental data of three-point bending of plain concrete and four-point bending of reinforced concrete. In addition, strain parameters can be used for training, and displacement parameters can be added for comprehensive consideration. The data obtained by DIC technology are grouped for training, and the recognition results of NN show that the combination of strain and displacement parameters, i.e., the response of specimen surface and whole body, can make results more objective and comprehensive. The identification results obtained by CNN and BP show that these technologies can accurately identify cracks. The identification results for reinforced concrete specimens are less affected by noise than those of plain concrete specimens. CNN is more convenient because it can identify some features directly from images, recognizing the cracks formed by macro development. BP can issue early warning of the microscopic cracks, but it requires a large amount of data and computation. It can be seen that CNN is more intuitive and efficient in image processing, and is suitable when low accuracy is adequate, while BP is suitable for occasions with greater accuracy requirements. The two tools have advantages in different situations, and together they can play an important role in engineering monitoring.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"63 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-024-1013-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
In engineering applications, concrete crack monitoring is very important. Traditional methods are of low efficiency, low accuracy, have poor timeliness, and are applicable in only a limited number of scenarios. Therefore, more comprehensive detection of concrete damage under different scenarios is of high value for practical engineering applications. Digital image correlation (DIC) technology can provide a large amount of experimental data, and neural network (NN) can process very rich data. Therefore, NN, including convolutional neural networks (CNN) and back propagation neural networks (BP), can be combined with DIC technology to analyze experimental data of three-point bending of plain concrete and four-point bending of reinforced concrete. In addition, strain parameters can be used for training, and displacement parameters can be added for comprehensive consideration. The data obtained by DIC technology are grouped for training, and the recognition results of NN show that the combination of strain and displacement parameters, i.e., the response of specimen surface and whole body, can make results more objective and comprehensive. The identification results obtained by CNN and BP show that these technologies can accurately identify cracks. The identification results for reinforced concrete specimens are less affected by noise than those of plain concrete specimens. CNN is more convenient because it can identify some features directly from images, recognizing the cracks formed by macro development. BP can issue early warning of the microscopic cracks, but it requires a large amount of data and computation. It can be seen that CNN is more intuitive and efficient in image processing, and is suitable when low accuracy is adequate, while BP is suitable for occasions with greater accuracy requirements. The two tools have advantages in different situations, and together they can play an important role in engineering monitoring.
期刊介绍:
Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.