Macroscopic and mesoscopic mechanism of hydration instability of the rock-grout coupled structure

IF 3.9 2区 工程技术 Q3 ENERGY & FUELS Geomechanics and Geophysics for Geo-Energy and Geo-Resources Pub Date : 2024-06-01 DOI:10.1007/s40948-024-00814-5
Haoyu Rong, Wei Wang, Guichen Li, Dongxu Liang, Jiahui Xu
{"title":"Macroscopic and mesoscopic mechanism of hydration instability of the rock-grout coupled structure","authors":"Haoyu Rong, Wei Wang, Guichen Li, Dongxu Liang, Jiahui Xu","doi":"10.1007/s40948-024-00814-5","DOIUrl":null,"url":null,"abstract":"<p>In order to investigate the macroscopic and mesoscopic mechanism of hydration instability of rock-grout structure under the influence of moisture content, a direct shear test combined with particle flow code (PFC) simulation was conducted subject to various moisture content levels and normal stresses. The results show that a higher moisture content would compromise the load bearing capacity of soft rock anchorage structures by deteriorating the structural integrity of the surrounding rock and the bonding effect between the anchorage interfaces. The load bearing capacity of the surrounding rock is also rapidly reduced. The rock-grout structure has four main shear damage modes, which are influenced by both moisture content and normal stress. When the saturated moisture content is reached, the anchorage structure has lost its bearing capacity, and the rock is muddied and subsequently debonded from the bolt. The energy required to break the internal adhesion of the rock-grout structure under the effect of hydration is greatly reduced, resulting in easy decoupling and dispersion between the rock skeleton particles. In turn, the rock surface particles bonded by the anchor agent are separated from the deeper particles, resulting in the failure of the bonding surface and weakening the coupling effect between the anchor and the surrounding rock. According to the test results, the control measures for surrounding rock of muddy roadway are put forward.</p>","PeriodicalId":12813,"journal":{"name":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","volume":"48 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40948-024-00814-5","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In order to investigate the macroscopic and mesoscopic mechanism of hydration instability of rock-grout structure under the influence of moisture content, a direct shear test combined with particle flow code (PFC) simulation was conducted subject to various moisture content levels and normal stresses. The results show that a higher moisture content would compromise the load bearing capacity of soft rock anchorage structures by deteriorating the structural integrity of the surrounding rock and the bonding effect between the anchorage interfaces. The load bearing capacity of the surrounding rock is also rapidly reduced. The rock-grout structure has four main shear damage modes, which are influenced by both moisture content and normal stress. When the saturated moisture content is reached, the anchorage structure has lost its bearing capacity, and the rock is muddied and subsequently debonded from the bolt. The energy required to break the internal adhesion of the rock-grout structure under the effect of hydration is greatly reduced, resulting in easy decoupling and dispersion between the rock skeleton particles. In turn, the rock surface particles bonded by the anchor agent are separated from the deeper particles, resulting in the failure of the bonding surface and weakening the coupling effect between the anchor and the surrounding rock. According to the test results, the control measures for surrounding rock of muddy roadway are put forward.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
岩石-灌浆料耦合结构水化失稳的宏观和中观机理
为了研究含水率影响下岩石-灌浆结构水化失稳的宏观和中观机理,在不同含水率水平和法向应力条件下进行了直接剪切试验,并结合粒子流代码(PFC)进行了模拟。结果表明,较高的含水率会破坏围岩的结构完整性和锚固界面之间的粘结效果,从而影响软岩锚固结构的承载能力。围岩的承载能力也会迅速降低。岩石-灌浆结构主要有四种剪切破坏模式,受含水量和法向应力的影响。当达到饱和含水量时,锚固结构已失去承载能力,岩石被泥化,随后与螺栓脱开。在水化作用下,破坏岩石-锚固结构内部粘附力所需的能量大大降低,从而使岩石骨架颗粒之间易于脱钩和分散。反过来,被锚固剂粘结的岩石表层颗粒与深层颗粒分离,导致粘结面失效,削弱了锚杆与围岩之间的耦合作用。根据试验结果,提出了泥泞巷道围岩的控制措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geomechanics and Geophysics for Geo-Energy and Geo-Resources
Geomechanics and Geophysics for Geo-Energy and Geo-Resources Earth and Planetary Sciences-Geophysics
CiteScore
6.40
自引率
16.00%
发文量
163
期刊介绍: This journal offers original research, new developments, and case studies in geomechanics and geophysics, focused on energy and resources in Earth’s subsurface. Covers theory, experimental results, numerical methods, modeling, engineering, technology and more.
期刊最新文献
Numerical analysis of the influence of quartz crystal anisotropy on the thermal–mechanical coupling behavior of monomineral quartzite Failure analysis of Nehbandan granite under various stress states and strain rates using a calibrated Riedel–Hiermaier–Thoma constitutive model Fracture propagation characteristics of layered shale oil reservoirs with dense laminas under cyclic pressure shock fracturing Numerical simulation of hydraulic fracture propagation from recompletion in refracturing with dynamic stress modeling Criterion for hydraulic fracture propagation behaviour at coal measure composite reservoir interface based on energy release rate theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1