Alaric Prins, Siphosethu S. Dyani, Jo-Marie Vreulink, Luis A. Maldonado, Marilize Le Roes-Hill
{"title":"Actinobacteria diversity associated with marine sediments and a wetland system, Agulhas-South Africa","authors":"Alaric Prins, Siphosethu S. Dyani, Jo-Marie Vreulink, Luis A. Maldonado, Marilize Le Roes-Hill","doi":"10.1186/s13213-024-01766-7","DOIUrl":null,"url":null,"abstract":"South Africa is known for its great biodiversity. The Agulhas Plain represents one such unique environment where low-gradient topography has resulted in extensive wetland formation. It is fed by two major river systems, bringing in brackish, alkaline water. It has been exposed to major marine transgression and regression events, and harbours great Fynbos diversity as well as a Mediterranean-type climate, thereby creating unique ecosystems. It is therefore surprising that little is known about the bacterial diversity associated with the Agulhas Plain and associated marine ecosystems. In this study, we focused on the actinobacterial diversity (Phylum Actinomycetota) associated with an emerging peatland on the Agulhas Plain (SF; Areas 1–3) and a marine site (ANP; Ocean, Rocky, Dry) located 10 km away from SF. A combined metataxanomics and isolation approach was taken to evaluate the actinobacterial diversity of the sampling sites and to determine the effect of environmental physicochemical parameters on these populations. Various genome analyses were performed on an Sva0096 marine bin to gain insight into its ecological role. Metataxanomics showed that the two sites shared defined major taxa, including Blastococcus, Geodermatophilus, Microbacterium, Mycobacterium, Nocardioides, Streptomyces, and the Sva0996 marine group. Analysis of the biosynthetic potential of an Sva0996 marine bin134 (obtained from GenBank) provided insights into the potential ecological role of this group of bacteria in both the marine and terrestrial environments. Higher actinobacterial diversity (Shannon index > 5) was observed for Areas 2 and 3 (SF), as well as the ANP Dry samples. The actinobacterial population composition was found to be driven by salinity, pH, Mn, and Ca, with certain areas of SF exhibiting similar (and even higher) salinity (SF: 70–100 Ω vs. ANP: 100–160 Ω) and lower pH levels (SF: 6.3-8.0 vs. ANP: 8.6–8.9) to that of the marine environment. This snapshot study has provided some insights into the actinobacterial diversity of the two sites studied. Analysis of an Sva0096 marine bin134 provided further insights into the potential ability of the Sva0096 marine group to survive in a unique terrestrial environment that is periodically exposed to environmental pressures that mimic the marine environment.","PeriodicalId":8069,"journal":{"name":"Annals of Microbiology","volume":"19 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13213-024-01766-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
South Africa is known for its great biodiversity. The Agulhas Plain represents one such unique environment where low-gradient topography has resulted in extensive wetland formation. It is fed by two major river systems, bringing in brackish, alkaline water. It has been exposed to major marine transgression and regression events, and harbours great Fynbos diversity as well as a Mediterranean-type climate, thereby creating unique ecosystems. It is therefore surprising that little is known about the bacterial diversity associated with the Agulhas Plain and associated marine ecosystems. In this study, we focused on the actinobacterial diversity (Phylum Actinomycetota) associated with an emerging peatland on the Agulhas Plain (SF; Areas 1–3) and a marine site (ANP; Ocean, Rocky, Dry) located 10 km away from SF. A combined metataxanomics and isolation approach was taken to evaluate the actinobacterial diversity of the sampling sites and to determine the effect of environmental physicochemical parameters on these populations. Various genome analyses were performed on an Sva0096 marine bin to gain insight into its ecological role. Metataxanomics showed that the two sites shared defined major taxa, including Blastococcus, Geodermatophilus, Microbacterium, Mycobacterium, Nocardioides, Streptomyces, and the Sva0996 marine group. Analysis of the biosynthetic potential of an Sva0996 marine bin134 (obtained from GenBank) provided insights into the potential ecological role of this group of bacteria in both the marine and terrestrial environments. Higher actinobacterial diversity (Shannon index > 5) was observed for Areas 2 and 3 (SF), as well as the ANP Dry samples. The actinobacterial population composition was found to be driven by salinity, pH, Mn, and Ca, with certain areas of SF exhibiting similar (and even higher) salinity (SF: 70–100 Ω vs. ANP: 100–160 Ω) and lower pH levels (SF: 6.3-8.0 vs. ANP: 8.6–8.9) to that of the marine environment. This snapshot study has provided some insights into the actinobacterial diversity of the two sites studied. Analysis of an Sva0096 marine bin134 provided further insights into the potential ability of the Sva0096 marine group to survive in a unique terrestrial environment that is periodically exposed to environmental pressures that mimic the marine environment.
期刊介绍:
Annals of Microbiology covers these fields of fundamental and applied microbiology:
general, environmental, food, agricultural, industrial, ecology, soil, water, air and biodeterioration.
The journal’s scope does not include medical microbiology or phytopathological microbiology.
Papers reporting work on bacteria, fungi, microalgae, and bacteriophages are welcome.
Annals of Microbiology publishes Review Articles, Original Articles, Short Communications, and Editorials.
Originally founded as Annali Di Microbiologia Ed Enzimologia in 1940, Annals of Microbiology is an official journal of the University of Milan.