DFAMiner: Mining minimal separating DFAs from labelled samples

Daniele Dell'Erba, Yong Li, Sven Schewe
{"title":"DFAMiner: Mining minimal separating DFAs from labelled samples","authors":"Daniele Dell'Erba, Yong Li, Sven Schewe","doi":"arxiv-2405.18871","DOIUrl":null,"url":null,"abstract":"We propose DFAMiner, a passive learning tool for learning minimal separating\ndeterministic finite automata (DFA) from a set of labelled samples. Separating\nautomata are an interesting class of automata that occurs generally in regular\nmodel checking and has raised interest in foundational questions of parity game\nsolving. We first propose a simple and linear-time algorithm that incrementally\nconstructs a three-valued DFA (3DFA) from a set of labelled samples given in\nthe usual lexicographical order. This 3DFA has accepting and rejecting states\nas well as don't-care states, so that it can exactly recognise the labelled\nexamples. We then apply our tool to mining a minimal separating DFA for the\nlabelled samples by minimising the constructed automata via a reduction to\nsolving SAT problems. Empirical evaluation shows that our tool outperforms\ncurrent state-of-the-art tools significantly on standard benchmarks for\nlearning minimal separating DFAs from samples. Progress in the efficient\nconstruction of separating DFAs can also lead to finding the lower bound of\nparity game solving, where we show that DFAMiner can create optimal separating\nautomata for simple languages with up to 7 colours. Future improvements might\noffer inroads to better data structures.","PeriodicalId":501124,"journal":{"name":"arXiv - CS - Formal Languages and Automata Theory","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Formal Languages and Automata Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.18871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose DFAMiner, a passive learning tool for learning minimal separating deterministic finite automata (DFA) from a set of labelled samples. Separating automata are an interesting class of automata that occurs generally in regular model checking and has raised interest in foundational questions of parity game solving. We first propose a simple and linear-time algorithm that incrementally constructs a three-valued DFA (3DFA) from a set of labelled samples given in the usual lexicographical order. This 3DFA has accepting and rejecting states as well as don't-care states, so that it can exactly recognise the labelled examples. We then apply our tool to mining a minimal separating DFA for the labelled samples by minimising the constructed automata via a reduction to solving SAT problems. Empirical evaluation shows that our tool outperforms current state-of-the-art tools significantly on standard benchmarks for learning minimal separating DFAs from samples. Progress in the efficient construction of separating DFAs can also lead to finding the lower bound of parity game solving, where we show that DFAMiner can create optimal separating automata for simple languages with up to 7 colours. Future improvements might offer inroads to better data structures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DFAMiner:从标记样本中挖掘最小分离 DFA
我们提出的 DFAMiner 是一种被动学习工具,用于从一组标记样本中学习最小分离决定论有限自动机(DFA)。分离式自动机是一类有趣的自动机,通常出现在常规模型检查中,并引起了人们对奇偶性博弈解的基础问题的兴趣。我们首先提出了一种简单的线性时间算法,它能从一组按通常的词典顺序给出的标记样本增量地构建三值 DFA(3DFA)。这个 3DFA 有接受和拒绝状态,也有不关心状态,因此它能准确识别标记的样本。然后,我们应用我们的工具,通过还原为解决 SAT 问题来最小化所构建的自动机,从而为标记样本挖掘出最小分离 DFA。经验评估表明,在从样本学习最小分离 DFA 的标准基准上,我们的工具明显优于目前最先进的工具。在高效构建分离式 DFA 方面取得的进展还可以帮助我们找到对偶博弈求解的下限,我们在此证明了 DFAMiner 可以为最多 7 种颜色的简单语言创建最优分离式自动机。未来的改进可能会提供更好的数据结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Query Learning of Advice and Nominal Automata Well-Behaved (Co)algebraic Semantics of Regular Expressions in Dafny Run supports and initial algebra supports of weighted automata Alternating hierarchy of sushifts defined by nondeterministic plane-walking automata $\mathbb{N}$-polyregular functions arise from well-quasi-orderings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1