A novel method for predicting ecological interactions with an unsupervised machine learning algorithm

IF 6.3 2区 环境科学与生态学 Q1 ECOLOGY Methods in Ecology and Evolution Pub Date : 2024-05-31 DOI:10.1111/2041-210X.14358
Sagar Adhurya, Young-Seuk Park
{"title":"A novel method for predicting ecological interactions with an unsupervised machine learning algorithm","authors":"Sagar Adhurya,&nbsp;Young-Seuk Park","doi":"10.1111/2041-210X.14358","DOIUrl":null,"url":null,"abstract":"<p>\n \n </p>","PeriodicalId":208,"journal":{"name":"Methods in Ecology and Evolution","volume":"15 7","pages":"1247-1260"},"PeriodicalIF":6.3000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/2041-210X.14358","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in Ecology and Evolution","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/2041-210X.14358","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用无监督机器学习算法预测生态相互作用的新方法
生态相互作用方面的知识空白促使人们开发了各种预测方法。传统上,生态相互作用是通过性状来推断的。然而,由于缺乏众多生物的性状信息,因此必须使用系统发生学数据和相互作用矩阵的统计见解来进行预测。以往的研究忽视了对模型预测的相互作用的验证。本研究采用了一种新方法,即使用自组织图(SOM)这种无监督机器学习算法来预测生态相互作用。自组织图根据节点之间的相互作用将节点分组到输出层,从而从输入的相互作用矩阵中学习。随后,训练有素的模型将交互作用预测为分数。为了区分交互和非交互,我们采用了 F1 分数最大化,将高于特定阈值的分数设定为交互,其余分数设定为非交互。我们将这种方法应用于三个单方元网和一个双方元网,随后使用两种创新方法验证了预测的相互作用:分类学验证和相互作用恢复验证。我们的方法表现出卓越的预测性能,尤其是在大型网络中。各种二元分类性能指标,包括 F1 分数(0.84-0.97)和准确率(0.97-0.99),都显示出很高的性能。此外,该方法产生的预测交互作用极小,表明预测噪音低,尤其是对大型网络而言。分类验证在连接度为 0.1 的元网络中表现出色,但在连接度极低的元网络中表现不佳。相比之下,交互恢复在较大的元网络中最为有效。我们提出的方法可以在噪声极小的情况下,仅利用输入的相互作用数据,而不依赖于相互作用节点的性状或系统发育信息,对生态相互作用做出高度准确的预测。这些预测对大型网络尤为精确,凸显了它们在解决新出现的广泛元网的知识缺口方面的潜力。值得注意的是,分类验证和相互作用恢复方法分别对连接度和网络规模很敏感,这为开发稳健的相互作用验证方法提供了前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.60
自引率
3.00%
发文量
236
审稿时长
4-8 weeks
期刊介绍: A British Ecological Society journal, Methods in Ecology and Evolution (MEE) promotes the development of new methods in ecology and evolution, and facilitates their dissemination and uptake by the research community. MEE brings together papers from previously disparate sub-disciplines to provide a single forum for tracking methodological developments in all areas. MEE publishes methodological papers in any area of ecology and evolution, including: -Phylogenetic analysis -Statistical methods -Conservation & management -Theoretical methods -Practical methods, including lab and field -This list is not exhaustive, and we welcome enquiries about possible submissions. Methods are defined in the widest terms and may be analytical, practical or conceptual. A primary aim of the journal is to maximise the uptake of techniques by the community. We recognise that a major stumbling block in the uptake and application of new methods is the accessibility of methods. For example, users may need computer code, example applications or demonstrations of methods.
期刊最新文献
Cover Picture and Issue Information Propagating observation errors to enable scalable and rigorous enumeration of plant population abundance with aerial imagery Spatially explicit predictions using spatial eigenvector maps SimpleMetaPipeline: Breaking the bioinformatics bottleneck in metabarcoding A LiDAR-driven pruning algorithm to delineate canopy drainage areas of stemflow and throughfall drip points
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1