Tae Eon Kim, Sunghoon Jung, Soo Hyun Lee, ChaeWon Mun, Eun-Yeon Byeon, Jun-Yeong Yang, Jucheol Park, Seunghun Lee, Heemin Kang, Sung-Gyu Park
{"title":"Development of one-step roll-to-roll system with incorporated vacuum sputtering for large-scale production of plasmonic sensing chips","authors":"Tae Eon Kim, Sunghoon Jung, Soo Hyun Lee, ChaeWon Mun, Eun-Yeon Byeon, Jun-Yeong Yang, Jucheol Park, Seunghun Lee, Heemin Kang, Sung-Gyu Park","doi":"10.1063/5.0211084","DOIUrl":null,"url":null,"abstract":"The trade-off relationship between cost and performance is a major challenge in the development of surface-enhanced Raman spectroscopy (SERS) sensors for practical applications. We propose a roll-to-roll system with incorporated vacuum sputtering to manufacture Ag-coated nanodimples (Ag/NDs) on A4-scale films in a single step. The Ag/ND SERS platforms were prepared via O2 ion beam sputtering and Ag sputtering deposition. The concave three-dimensional spaces in the Ag/NDs functioned as hotspots, and their optimal fabrication conditions were investigated with two variables: moving speed and Ag thickness. The entire process was automated, which resulted in highly consistent optical responses (i.e., relative standard deviation of ∼10%). The activation of plasmonic hotspots was demonstrated by electric-field profiles calculated via the finite-difference time-domain method. The wavelength dependency of the Ag/ND platforms was also examined by dark-field microscopy. The results indicate that the developed engineering technique for the large-scale production of Ag/ND plasmonic chips would likely be competitive in the commercial market.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"21 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0211084","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The trade-off relationship between cost and performance is a major challenge in the development of surface-enhanced Raman spectroscopy (SERS) sensors for practical applications. We propose a roll-to-roll system with incorporated vacuum sputtering to manufacture Ag-coated nanodimples (Ag/NDs) on A4-scale films in a single step. The Ag/ND SERS platforms were prepared via O2 ion beam sputtering and Ag sputtering deposition. The concave three-dimensional spaces in the Ag/NDs functioned as hotspots, and their optimal fabrication conditions were investigated with two variables: moving speed and Ag thickness. The entire process was automated, which resulted in highly consistent optical responses (i.e., relative standard deviation of ∼10%). The activation of plasmonic hotspots was demonstrated by electric-field profiles calculated via the finite-difference time-domain method. The wavelength dependency of the Ag/ND platforms was also examined by dark-field microscopy. The results indicate that the developed engineering technique for the large-scale production of Ag/ND plasmonic chips would likely be competitive in the commercial market.
期刊介绍:
APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications.
In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.