Megan Su, Stephanie Hu, Hong Xiong, Elias Baedorf Kassis, Li-Wei H Lehman
{"title":"Counterfactual Sepsis Outcome Prediction Under Dynamic and Time-Varying Treatment Regimes.","authors":"Megan Su, Stephanie Hu, Hong Xiong, Elias Baedorf Kassis, Li-Wei H Lehman","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis is a life-threatening condition that occurs when the body's normal response to an infection is out of balance. A key part of managing sepsis involves the administration of intravenous fluids and vasopressors. In this work, we explore the application of G-Net, a deep sequential modeling framework for g-computation, to predict outcomes under counterfactual fluid treatment strategies in a real-world cohort of sepsis patients. Utilizing observational data collected from the intensive care unit (ICU), we evaluate the performance of multiple deep learning implementations of G-Net and compare their predictive performance with linear models in forecasting patient outcomes and trajectories over time under the observational treatment regime. We then demonstrate that G-Net can generate counterfactual prediction of covariate trajectories that align with clinical expectations across various fluid limiting regimes. Our study demonstrates the potential clinical utility of G-Net in predicting counterfactual treatment outcomes, aiding clinicians in informed decision-making for sepsis patients in the ICU.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2024 ","pages":"285-294"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141800/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Sepsis is a life-threatening condition that occurs when the body's normal response to an infection is out of balance. A key part of managing sepsis involves the administration of intravenous fluids and vasopressors. In this work, we explore the application of G-Net, a deep sequential modeling framework for g-computation, to predict outcomes under counterfactual fluid treatment strategies in a real-world cohort of sepsis patients. Utilizing observational data collected from the intensive care unit (ICU), we evaluate the performance of multiple deep learning implementations of G-Net and compare their predictive performance with linear models in forecasting patient outcomes and trajectories over time under the observational treatment regime. We then demonstrate that G-Net can generate counterfactual prediction of covariate trajectories that align with clinical expectations across various fluid limiting regimes. Our study demonstrates the potential clinical utility of G-Net in predicting counterfactual treatment outcomes, aiding clinicians in informed decision-making for sepsis patients in the ICU.