Oluwatobiloba Osikoya, Nataliia Hula, Renée de Nazaré Oliveira da Silva, Styliani Goulopoulou
{"title":"Perivascular Adipose Tissue and Uterine Artery Adaptations to Pregnancy","authors":"Oluwatobiloba Osikoya, Nataliia Hula, Renée de Nazaré Oliveira da Silva, Styliani Goulopoulou","doi":"10.1111/micc.12857","DOIUrl":null,"url":null,"abstract":"<p>Pregnancy is characterized by longitudinal maternal, physiological adaptations to support the development of a fetus. One of the cardinal maternal adaptations during a healthy pregnancy is a progressive increase in uterine artery blood flow. This facilitates sufficient blood supply for the development of the placenta and the growing fetus. Regional hemodynamic changes in the uterine circulation, such as a vast reduction in uterine artery resistance, are mainly facilitated by changes in uterine artery reactivity and myogenic tone along with remodeling of the uterine arteries. These regional changes in vascular reactivity have been attributed to pregnancy-induced adaptations of cell-to-cell communication mechanisms, with an emphasis on the interaction between endothelial and vascular smooth muscle cells. Perivascular adipose tissue (PVAT) is considered the fourth layer of the vascular wall and contributes to the regulation of vascular reactivity in most vascular beds and most species. This review focuses on mechanisms of uterine artery reactivity and the role of PVAT in pregnancy-induced maternal vascular adaptations, with an emphasis on the uterine circulation.</p>","PeriodicalId":18459,"journal":{"name":"Microcirculation","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/micc.12857","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microcirculation","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/micc.12857","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pregnancy is characterized by longitudinal maternal, physiological adaptations to support the development of a fetus. One of the cardinal maternal adaptations during a healthy pregnancy is a progressive increase in uterine artery blood flow. This facilitates sufficient blood supply for the development of the placenta and the growing fetus. Regional hemodynamic changes in the uterine circulation, such as a vast reduction in uterine artery resistance, are mainly facilitated by changes in uterine artery reactivity and myogenic tone along with remodeling of the uterine arteries. These regional changes in vascular reactivity have been attributed to pregnancy-induced adaptations of cell-to-cell communication mechanisms, with an emphasis on the interaction between endothelial and vascular smooth muscle cells. Perivascular adipose tissue (PVAT) is considered the fourth layer of the vascular wall and contributes to the regulation of vascular reactivity in most vascular beds and most species. This review focuses on mechanisms of uterine artery reactivity and the role of PVAT in pregnancy-induced maternal vascular adaptations, with an emphasis on the uterine circulation.
期刊介绍:
The journal features original contributions that are the result of investigations contributing significant new information relating to the vascular and lymphatic microcirculation addressed at the intact animal, organ, cellular, or molecular level. Papers describe applications of the methods of physiology, biophysics, bioengineering, genetics, cell biology, biochemistry, and molecular biology to problems in microcirculation.
Microcirculation also publishes state-of-the-art reviews that address frontier areas or new advances in technology in the fields of microcirculatory disease and function. Specific areas of interest include: Angiogenesis, growth and remodeling; Transport and exchange of gasses and solutes; Rheology and biorheology; Endothelial cell biology and metabolism; Interactions between endothelium, smooth muscle, parenchymal cells, leukocytes and platelets; Regulation of vasomotor tone; and Microvascular structures, imaging and morphometry. Papers also describe innovations in experimental techniques and instrumentation for studying all aspects of microcirculatory structure and function.