Aran Son, Ishita Baral, Guido H. Falduto, Daniella M. Schwartz
{"title":"Locus of (IL-9) control: IL9 epigenetic regulation in cellular function and human disease","authors":"Aran Son, Ishita Baral, Guido H. Falduto, Daniella M. Schwartz","doi":"10.1038/s12276-024-01241-y","DOIUrl":null,"url":null,"abstract":"Interleukin-9 (IL-9) is a multifunctional cytokine with roles in a broad cross-section of human diseases. Like many cytokines, IL-9 is transcriptionally regulated by a group of noncoding regulatory elements (REs) surrounding the IL9 gene. These REs modulate IL-9 transcription by forming 3D loops that recruit transcriptional machinery. IL-9-promoting transcription factors (TFs) can bind REs to increase locus accessibility and permit chromatin looping, or they can be recruited to already accessible chromatin to promote transcription. Ample mechanistic and genome-wide association studies implicate this interplay between IL-9-modulating TFs and IL9 cis-REs in human physiology, homeostasis, and disease. Interleukin 9 (IL-9), a protein that helps the body’s immune system, has been researched for its role in various diseases. However, the mechanisms regulating IL-9 is production are not completely known. A team of researchers, led by A. Son and D.M. Schwartz, have reviewed how IL-9 production is controlled, focusing on specific elements within the IL9 gene and surrounding non-coding regulatory DNA. They reviewed existing studies, mainly in mice, and found several factors that bind to these elements and affect IL-9 production. They also discussed how IL9 epigenetics are connected to human diseases, finding links with allergies, autoimmune diseases, and cancer. These discoveries could aid in creating new treatments for these diseases. The researchers concluded that more studies are needed to fully understand how epigenetic regulation of IL-9 modulates disease. This could lead to new treatment strategies for various conditions. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":9.5000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11263352/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s12276-024-01241-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Interleukin-9 (IL-9) is a multifunctional cytokine with roles in a broad cross-section of human diseases. Like many cytokines, IL-9 is transcriptionally regulated by a group of noncoding regulatory elements (REs) surrounding the IL9 gene. These REs modulate IL-9 transcription by forming 3D loops that recruit transcriptional machinery. IL-9-promoting transcription factors (TFs) can bind REs to increase locus accessibility and permit chromatin looping, or they can be recruited to already accessible chromatin to promote transcription. Ample mechanistic and genome-wide association studies implicate this interplay between IL-9-modulating TFs and IL9 cis-REs in human physiology, homeostasis, and disease. Interleukin 9 (IL-9), a protein that helps the body’s immune system, has been researched for its role in various diseases. However, the mechanisms regulating IL-9 is production are not completely known. A team of researchers, led by A. Son and D.M. Schwartz, have reviewed how IL-9 production is controlled, focusing on specific elements within the IL9 gene and surrounding non-coding regulatory DNA. They reviewed existing studies, mainly in mice, and found several factors that bind to these elements and affect IL-9 production. They also discussed how IL9 epigenetics are connected to human diseases, finding links with allergies, autoimmune diseases, and cancer. These discoveries could aid in creating new treatments for these diseases. The researchers concluded that more studies are needed to fully understand how epigenetic regulation of IL-9 modulates disease. This could lead to new treatment strategies for various conditions. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
期刊介绍:
Experimental & Molecular Medicine (EMM) stands as Korea's pioneering biochemistry journal, established in 1964 and rejuvenated in 1996 as an Open Access, fully peer-reviewed international journal. Dedicated to advancing translational research and showcasing recent breakthroughs in the biomedical realm, EMM invites submissions encompassing genetic, molecular, and cellular studies of human physiology and diseases. Emphasizing the correlation between experimental and translational research and enhanced clinical benefits, the journal actively encourages contributions employing specific molecular tools. Welcoming studies that bridge basic discoveries with clinical relevance, alongside articles demonstrating clear in vivo significance and novelty, Experimental & Molecular Medicine proudly serves as an open-access, online-only repository of cutting-edge medical research.